
COSC 201 – Assignment #1
Fall 16

Objective: Write a program that will take in a text filename via the command line. That file will
contain a list of accounts that will need to be placed in a database based on the type of account,
one per line, formatted name, account type, current balance, class specific information. See the
implementation details below in regards to the database and the other specific classes that you’ll
need.

Implementation Details:

• A Bank class, which stores an ArrayList that can contain accounts of all types including
savings and checking accounts, some of which are interest bearing and some of which are
not. Bank contains a method called totalAssets that returns the sum of all the balances in
all the accounts. It also contains a method called addInterest that invokes the addInterest
method for all the accounts in the bank that are interest-bearing. You should also create a
method to openAccount and closeAccount. openAccount should take in information from
the user on the amount of the initial deposit and what kind of account, and closeAccount
should get the account number from the user. Finally, the toString method for Bank
should return a string containing a list of the accounts, with all account information, one
per line, sorted by name.

• Account is an abstract class. Each account stores the name of the account holder, an
account number (sequentially assigned automatically upon opening), and the current
balance, along with an appropriate constructor to initialize these fields, and methods to
add and subtract from the current balance. NOTE: All these methods are implemented in
the Account class, so even though Account is abstract, none of the methods you are
implementing are abstract. Accounts should be Comparable by name.

• The InterestBearingAccount interface declares a single method addInterest (no
parameters, void return type) that increases the balance by the interest rate that is
appropriate for the particular account.

• An InterestCheckingAccount is an Account that is also an InterestBearingAccount.
Invoking addInterest increases the balance by the interest value. This value defaults to
3%, but could be higher or lower on an account-by-account basis. Lines from the file will
contain the percentage as a float (e.g. 3.0f) as the class specific information entry.

• A PlatinumCheckingAccount is an InterestCheckingAccount. Invoking addInterest
increases the balance by double the rate for an InterestCheckingAccount (whatever that
rate happens to be).

• A NonInterestCheckingAccount is an Account but it is not an InterestBearingAccount. It
has no additional functionality beyond the basic Account class and will have no class
specific information from the file.

• AccountTest, a driver for your Bank. This should get a filename from the command line
arguments, create appropriate Accounts, and upon instantiation of Bank, send whatever
container of Accounts via the constructor. You should then make calls to Bank’s
totalAssets, addInterest, totalAssets (again), openAccount, toString, closeAccount,
toString. See testing below for additional details.

Expectations: Your code will need to be neat, concise, well documented and above all, correct
(see Testing). All classes should have headers and each method should have comments
describing the method’s function. You must do error checking on any user input. For every class,

appropriate constructors, accessors, mutators, and toString methods must be implemented. Any
novel or possibly confusing code should be explained, as I do get confused and distracted easily.

Testing: I will be testing this with variously sized files, including an empty file, no file passed via
command line and a file that does not exist. You will need to perform basic error handling, but
you can assume that the file is properly formatted. There will be a sample input file, and sample
output posted.

Quick Note: No prints should occur in any of the classes other than AccountTest and the
openAccount and closeAccount methods of Bank.

Grading rubric will be given out at least a week ahead of the due date. You may work in teams of
up to three for this assignment. If you choose to work in teams, one member (and only one) of the
team must email me that information by 5pm on September 27th. Failure to do so (and continuing
to work together) will result in a 30 point deduction.

Learning Targets: inheritance, abstract classes, interfaces, Comparable, file I/O, String
manipulation

DUE: October 7th, 11:59 pm Eastern via Blackboard

Credit: Adapted from Exercise 4.53 from “Data Structures and Problem Solving Using Java, 4e.”

