
Dynamic
Programming

Stuart Badger and Tyler Jones

Background

Richard Bellman pioneered Dynamic Programming in the 50’s

Dynamic Programming works via the Principle of Optimality:
An optimal sequence of decisions is obtained iff each subsequence of decisions
is optimal.

I.e. we can build large optimization solutions out of small optimization solutions.

Intro

Dynamic Programming is decomposing a problem into subproblems whose
solutions are stored for later use.

The two biggest categories of Dynamic Programming are top-down and
bottom-up.

Top-Down

● Starting with the large problem, decompose it into smaller problems
● Compute and store the solution to the smaller problems if they haven’t been

computed yet
● Use the solutions to the subproblems to compute the solution to the large

problem
fibonacci(4)

Fib[1]

fibonacci(3) Fib[2]

fibonacci(2)

Fib[0]Fib[1]

Top-Down Example

int marker = 1;
arr[]; arr[0] = 0; arr[1] = 1;

topDownFib(int n){
if(n > marker){

int temp = topDownFib(n-1)+topDownFib(n-2);
marker = n;
arr[n] = temp;

}
return arr[n];

}

Bottom-Up

Combine the solutions to small subproblems to obtain the solutions to
subproblems of increasing size. Continue in this fashion until we arrive at the
solution to the original problem.

fibonacci(3) =>

Fib[0] = 0
Fib[1] = 1
Fib[2] = Fib[1] + Fib[2] = 1
Fib[3] = Fib[2] + Fib[1] = 2

Bottom-Up Example

int marker = 1; //the highest index we’ve calculated so far
HashMap<Integer, Integer> map; //Add 0 at 0th index and 1 at 1st index

bottomUpFib(int n) {
if (n > marker) {

int i = marker;
for (; i < n ; i ++) {

map.add(i+1, map.get(i-1) + map.get(i-2));
}
marker = n;

}
return map.get(n);

}

Top-Down vs Bottom-Up

● Top-down has recursive overhead

● Bottom-up may compute more sub-problems than necessary.

Theoretical Computer Science

Theoretical Computer Science concerns itself with three chief categories:

● Algorithm Design
● Algorithm Analysis
● Modes of Computation

Dynamic Programming is part of Algorithm Design

● Optimization Algorithm
○ Speed vs. Memory

Current Theory

● Increased speed
● Limited by difficulty in decomposing a large problem into smaller

subproblems
● Favors objects that are linearly ordered and cannot be rearranged

○ Characters in a string, matrices in a chain, left-to-right order of leaves in a search tree

● Problems evaluating subproblems in an efficient order
● Uses more memory

Exercise

Try and think of a problem where the dynamic programming approach would be
useful. The problem doesn’t necessarily need to be framed in terms of coding
and computers.

Discuss with your table for a minute (or so).

(Hint: what’s a problem where it’s worth remembering the answer once in
awhile?)

Real-World Application I

● Bioinformatics
○ Interdisciplinary field that develops methods and software tools for understanding biological

data
■ DNA/RNA Sequence Alignment

● Control Theory
○ Interdisciplinary branch of engineering and mathematics that deals with the behavior of

dynamic systems with inputs and how their behavior is modified by feedback
■ AI computing approaches

Real-World Application II

● Information Theory
○ Studies the quantification, storage, and communication of information

■ Cryptography
■ Gambling

● Operations Research
○ Deals with the application of advanced analytical methods to help make better decisions

■ Optimal search
■ Routing
■ Scheduling

● Computer Science

Real-World Application III

● Diff Algorithm
○ Reports differences between two files, expressed as a minimal list of line changes to bring

either file into agreement with the other

■ Solves the longest common subsequence problem to find the lines that do not change
between files

● Viterbi Algorithm
○ Decodes convolutional codes used in both CDMA and GSM digital cellular, dial-up modems,

satellite, deep-space communications, and 802.11 wireless LANs
■ Decoding algorithm for convolutional codes over noisy digital communication links

■ Commonly used in speech recognition, speech synthesis, diarization, keyword
spotting, computational linguistics, and bioinformatics

Real-World Application IV

● Smith-Waterman Algorithm
○ Performs local sequence alignment for determining similar regions between two strings or

nucleotide or protein sequences
○ Compares segments for all possible lengths and optimizes the similarity measure

● Bellman-Ford Algorithm
○ Detects a negative cycle if any exists in a weighted digraph
○ Finds the shortest simple path if no negative cycles exist

● Cocke-Kasami-Younger Algorithm
○ Parsing algorithm for context-free grammars given in Chomsky Normal Form

Ongoing Research I

● Researchers at MIT’s Computer Science and Artificial Intelligence
Laboratory (CSAIL) working on parallelize algorithms that utilize dynamic
programming called Bellmania

● Programs run on multicore chips
● Operate up to 11 times faster than other parallel processing technique

Ongoing Research II

● Limitations
○ Typically 10 times longer than single-core version
○ Individual lines of code are more complex

■ So complex that errors occur
○ Problems efficiently accessing the stored solutions in parallel

■ Memory management more complex

Backup Exercise

Works Cited
Blum, Avrim. "Lecture 11 Dynamic Proramming." Lect1001.pdf. Web. 29 Nov. 2016.
https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf

MIT News Office, Larry Hardesty. "Faster Programs, Easier Programming." MIT News. N.p., 07 Nov. 2016. Web. 29 Nov. 2016.

Leopold, George. "New Approach Seeks to Automate Parallel Programming." Datanami. N.p., 11 Nov. 2016. Web. 29 Nov. 2016.

Wayne, Kevin. "Dynamic Programming." 06dynamic-programming.pdf. Web. 29 Nov. 2016.
https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/06dynamic-programming.pdf

Bhowmik, Biswajit. "Dynamic Programming–Its Principles, Applications, Strengths, and Limitations." criterion 4 (2010): 7.
http://www.academia.edu/2875080/Dynamic_Programming_Its_Principles_Applications_Strengths_and_Limitations

Hunt, James Wayne, and M. D. MacIlroy. An algorithm for differential file comparison. Bell Laboratories, 1976.
http://www.cs.dartmouth.edu/~doug/diff.pdf

"Shortest Paths." SpringerReference (n.d.): n. pag. Web.
https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf

Ryan, Matthew S., and Graham R. Nudd. "The viterbi algorithm." (1993).
http://ciao.twiki.di.uniroma1.it/pub/NLP/WebHome/TutorialViterbi.pdf

https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf
https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf
https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/06dynamic-programming.pdf
https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/06dynamic-programming.pdf
http://www.academia.edu/2875080/Dynamic_Programming_Its_Principles_Applications_Strengths_and_Limitations
http://www.academia.edu/2875080/Dynamic_Programming_Its_Principles_Applications_Strengths_and_Limitations
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://www.cs.dartmouth.edu/~doug/diff.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf
http://ciao.twiki.di.uniroma1.it/pub/NLP/WebHome/TutorialViterbi.pdf
http://ciao.twiki.di.uniroma1.it/pub/NLP/WebHome/TutorialViterbi.pdf

