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Background

Richard Bellman pioneered Dynamic Programming in the 50’s

Dynamic Programming works via the Principle of Optimality:
An optimal sequence of decisions is obtained iff each subsequence of decisions  
is optimal.

I.e. we can build large optimization solutions out of small optimization solutions.



Intro

Dynamic Programming is decomposing a problem into subproblems whose 
solutions are stored for later use.

The two biggest categories of Dynamic Programming are top-down and 
bottom-up.



Top-Down

● Starting with the large problem, decompose it into smaller problems
● Compute and store the solution to the smaller problems if they haven’t been 

computed yet
● Use the solutions to the subproblems to compute the solution to the large 

problem
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Top-Down Example

int marker = 1;
arr[]; arr[0] = 0; arr[1] = 1;

topDownFib(int n){
if(n > marker){

int temp = topDownFib(n-1)+topDownFib(n-2);
marker = n;
arr[n] = temp;

}
return arr[n];

}



Bottom-Up

Combine the solutions to small subproblems to obtain the solutions to 
subproblems of increasing size.  Continue in this fashion until we arrive at the 
solution to the original problem.

fibonacci(3) =>

Fib[0] = 0
Fib[1] = 1
Fib[2] = Fib[1] + Fib[2] = 1
Fib[3] = Fib[2] + Fib[1] = 2



Bottom-Up Example

int marker = 1; //the highest index we’ve calculated so far
HashMap<Integer, Integer> map; //Add 0 at 0th index and 1 at 1st index

bottomUpFib(int n) {
if (n > marker) {

int i = marker;
for (; i < n ; i ++) {

map.add(i+1, map.get(i-1) + map.get(i-2));
}
marker = n;

}
return map.get(n);                                               

}



Top-Down vs Bottom-Up

● Top-down has recursive overhead

● Bottom-up may compute more sub-problems than necessary.



Theoretical Computer Science

Theoretical Computer Science concerns itself with three chief categories:

● Algorithm Design
● Algorithm Analysis
● Modes of Computation

Dynamic Programming is part of Algorithm Design

● Optimization Algorithm
○ Speed vs. Memory



Current Theory

● Increased speed
● Limited by difficulty in decomposing a large problem into smaller 

subproblems
● Favors objects that are linearly ordered and cannot be rearranged

○ Characters in a string, matrices in a chain, left-to-right order of leaves in a search tree

● Problems evaluating subproblems in an efficient order
● Uses more memory



Exercise

Try and think of a problem where the dynamic programming approach would be 
useful.  The problem doesn’t necessarily need to be framed in terms of coding 
and computers.

Discuss with your table for a minute (or so).

(Hint: what’s a problem where it’s worth remembering the answer once in 
awhile?)



Real-World Application I

● Bioinformatics
○ Interdisciplinary field that develops methods and software tools for understanding biological 

data
■ DNA/RNA Sequence Alignment

● Control Theory
○ Interdisciplinary branch of engineering and mathematics that deals with the behavior of 

dynamic systems with inputs and how their behavior is modified by feedback
■ AI computing approaches



Real-World Application II

● Information Theory
○ Studies the quantification, storage, and communication of information

■ Cryptography
■ Gambling

● Operations Research
○ Deals with the application of advanced analytical methods to help make better decisions

■ Optimal search
■ Routing
■ Scheduling

● Computer Science



Real-World Application III

● Diff Algorithm
○ Reports differences between two files, expressed as a minimal list of line changes to bring 

either file into agreement with the other

■ Solves the longest common subsequence problem to find the lines that do not change 
between files

● Viterbi Algorithm
○ Decodes convolutional codes used in both CDMA and GSM digital cellular, dial-up modems, 

satellite, deep-space communications, and 802.11 wireless LANs
■ Decoding algorithm for convolutional codes over noisy digital communication links

■ Commonly used in speech recognition, speech synthesis, diarization, keyword 
spotting, computational linguistics, and bioinformatics



Real-World Application IV

● Smith-Waterman Algorithm
○ Performs local sequence alignment for determining similar regions between two strings or 

nucleotide or protein sequences
○ Compares segments for all possible lengths and optimizes the similarity measure

● Bellman-Ford Algorithm
○ Detects a negative cycle if any exists in a weighted digraph
○ Finds the shortest simple path if no negative cycles exist

● Cocke-Kasami-Younger Algorithm
○ Parsing algorithm for context-free grammars given in Chomsky Normal Form



Ongoing Research I

● Researchers at MIT’s Computer Science and Artificial Intelligence 
Laboratory (CSAIL) working on parallelize algorithms that utilize dynamic 
programming called Bellmania

● Programs run on multicore chips
● Operate up to 11 times faster than other parallel processing technique



Ongoing Research II

● Limitations
○ Typically 10 times longer than single-core version
○ Individual lines of code are more complex

■ So complex that errors occur
○ Problems efficiently accessing the stored solutions in parallel

■ Memory management more complex



Backup Exercise
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