P
 VS NP

By: Handy Cho, Rachel Kaper and Anna Steinfeld

In Class Exercise:

You have 24 minutes and 30

seconds to prove (or disprove)

$$
\mathrm{P}=\mathrm{NP} .
$$

...Just Kidding

What is P vs NP?

- P stands for polynomial time which means that the complexity of the algorithm (number of operations it would take as a function of the number of data items) is $O\left(n^{\wedge} k\right)$, for some constant variable k
- $P=N P$ means that if an equation takes polynomial time on a non-deterministic model then a deterministic model would solve the same equation also in polynomial time. P vs NP is the question whether these two models are identical

History of P vs NP

- Started in 1928 when David Hilbert proposed a challenge called Entscheidungs problem
- 1936 Alonzo Church and Alan Turing published papers known as Church-Turing thesis ("Every effectively calculable function is a computable function.")
- 1965 Alan Cobham published paper (The intrinsic computational difficulty of functions). Cobham-Edmond Thesis: reasonable model of computation can be simulated on any other model with a method that is polynomial in input size
- 1972 Richard Karp published famous paper "Reducibility Among Combinatorial Problems"

Facts From Experts

- Poll completed in 1996 and 1997
- 100 experts from various fields questioned about this problem
- Appeared in SIGACT News Complexity Theory

What Will the Verdict Be ?

In 1996-1997 100 experts were polled for their opinions on P ?= NP:

- 61 thought $P \neq N P$
- 9 thought $P=N P$
- 4 thought P is independent of NP
- 3 stated it is NOT independent of Primitive Recursive Arithmetic
- 1 said it depended on the model
- 22 offered no opinion

When Will P ve NP Be Solved?

What Techniques Will Be Used?

- Combinatorics and Complexity
- Logic
- Math
- Misc.
- Computer assisted, non-constructive
- New techniques
- 36 people said technique is known

Additional Comments

- 13 people stated the solution would be hard
- 5 people thought the solution would be easy to follow
- 4 said the problem will be irrelevant due to large constraints/degree
- 2 fear a nonconstructive proof of $\mathrm{P}=\mathrm{NP}$
- 2 said question becomes irrelevant after quantum computing

Contributions and "Proofs:" P vs NP

- 115 "Proofs" of P vs NP
- 62 Equal
- 50 P $\neq N P$
- 2 Unprovable
- 1 Undecidable
- One paper appeared in peer-reviewed journal
- Mihalis Yannakakis (1988) proved using a symmetric linear program to express the traveling salesman requires exponential size

Possible Outcomes of P vs NP

- $P=N P$
- $P \neq N P$
- Independent/Undecidable
- Unprovable
- $P \sim N P$
"If $\mathrm{P}=\mathrm{NP}$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative leaps," no fundamental gap between solving a problem and recognizing the solution once it's found.
Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett."

-Scott Aaronson, MIT

How Would We Prove P ?= NP?

- To prove P = NP
- Give an algorithm that solves any NP complete problem in poly-time
- To prove $\mathrm{P} \neq \mathrm{NP}$
- Prove that no such algorithm exists for any NP complete problem
- Much harder
- Most computer scientists think $P \neq N P$
- Other computer scientists that do believe $P=N P$ think the proof would be nonconstructive

What Happens if $\mathrm{P}=\mathrm{NP}$?

- RSA encryption would no longer be effective
- Leaps in Artificial Intelligent systems
- Programming would be greatly simplified
- Less code writing
- Online transactions wouldn't be secure
- Mathematical leaps
- Proofs could be automatically generated/verified

Attempts to Solve P = NP Using Clique

- 1996 Anatoly Plotnikov
- Polynomial-Time Partition of a Graph into Cliques
- Published in SouthWest Journal of Pure and Applied Mathematics
- 1997 Tang Pushan
- A polynomial algorithm for CLIQUE problem
- Claimed to have found an algorithm with polynomial time complexity for finding clique in a graph
- 2008 Zohreh O. Akbari
- A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

Other Attempts to Prove $\mathrm{P}=\mathrm{NP}$

- Hamiltonian Path
- 3-SAT
- 2009 - Narendra S. Chaudhari $\rightarrow O\left(n^{\wedge} 13\right)$
- 2009 - Luigi Salemi $\rightarrow O\left(\mathrm{n}^{\wedge 11)}\right.$
- 2010 - Changlin Wan
- Crux - recursive definition of a Turing machine

Why Believe P = NP ?

- $a^{b} \equiv c(p)$
- Primality Testing ϵ_{P}
- Fermat's Little Theorem:
- $0<a<p, a \in N$
- $a^{(p-1)} \equiv 1$ (p$)$
- Wilson's Theorem
- n is prime iff $(\mathrm{n}-1)$! $\equiv-1(\bmod n)$

What Happens if $\mathrm{P} \neq \mathrm{NP}$?

- Wouldn't be a huge impact; most people believe this to be true anyways
- People would stop looking for poly-time solutions to NP-Hard problems
- Proof could lead to helpful insights

Why People Believe $\mathrm{P} \neq \mathrm{NP}$

- Intuition - with all that $\mathrm{P}=\mathrm{NP}$ would change, it just doesn't seem likely
- Computer scientists would have been able to solve it by now
- $\mathrm{P}=$ NP would imply a universal method
- All NP complete problems are related but not equal

Attempts to solve $\mathrm{P}=\mathrm{NP}$

- Vinay Deolalikar published over an 100 page proof to prove P is not equal to NP
- Neil immerman proposed that there were flaws.

Failed Attempts to Prove $\mathrm{P} \neq \mathrm{NP}$

- Circuit Complexity
- Quantum Computing
- Handicapping

Circuit Complexity

- Main Idea:
- NP-Complete problems cannot be solved by small circuits of AND, OR, and NOT gates
- Small: some bound given by a fixed polynomial dependent on input size

Circuit Complexity

- Successes:
- 1985 Razborov showed NP-Complete problem of finding a large clique does not has small circuits if only AND and OR gates are considered
- Extending these results to general circuits would prove $P \neq N P$
- Challenges
- Razborov later showed his technique cannot be extended to include NOT gates
- Razborov and Rudich gave evidence that circuit complexity cannot be pushed much farther

Quantum Computing

- Peter Shor mid 1990s factored using hypothetical quantum computer
- Very reliant on algebraic structures of numbers
- Not seen in NP-Complete problems
- Cannot apply algorithm to generic search problems

Handicapping

- Main idea:
- Computers have a lot of computational ability
- Handicap the computer and see if anything can be proved
- If needed, handicap the computer further
- May give insight into why searching is necessary

Exercise:

Talk with your table to come up with some examples of handicapping in computer science and in life!

Current Approach: P = NP

- Ketan Mulmuley and Milind Sohoni using Algebraic Geometry and dubbed Geometric Complexity Theory (GCT)
- Avoids previous problems, very complex
- Use high dimensional polygons that are based on group representations
- Would show Hamiltonian path has size at least $n^{\log (n)}$
- 3 complicated claims
- Mulmuley conjectures ${ }^{\sim} 100$ years

Thank You!

> Questions?

DO YOUR

COURSE EVALS

(PLEASE)!

Sources

1. https://www.youtube.com/watch?v=msp2y_Y5MLE\&t=219s
2. https://www.cs.umd.edu/~gasarch/papers/poll.pdf
3. https://rjlipton.wordpress.com/2009/09/18/why-believe-that-pnp-is-impossible/
4. http://www.win.tue.nl/~ ${ }^{\text {gwoegi/P-versus-NP.htm }}$
5. http://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
6. https://primes.utm.edu/prove/prove4_3.html
7. http://people.cs.uchicago.edu/~fortnow/papers/pnp-cacm.pdf
8. http://cgi.csc.liv.ac.uk/nped/teachadmin/COMP202/annotated_np.html
9. https://www.quantamagazine.org/20151214-graph-isomorphism-algorithm/
10. http://michaelnielsen.org/polymath1/index.php?title=Random_k-SAT
11. https://www.win.tue.nl/ ${ }^{\text {g }}$ gwoegi/P-versus-NP/Deolalikar.pdf
12. https://rilipton.wordpress.com/2010/08/12/fatal-flaws-in-deolalikars-proof/
13. https://www.win.tue.nl/~gwoegi/P-versus-NP/sipser.pdf
14. http://www.ijser.org/researchpaper\\History-of-P-versus-NP-Problem.pdf

Supplementary Material

Poly-time Algorithm —Primality

Theorem: Suppose that a and p are relatively prime integers with $p>1 . p$ is prime if and only if

$$
(x-a)^{p}=\left(x^{p}-a\right) \quad(\bmod p)
$$

Polytime Algorithm -- Primality

Input: Integer $n>1$
if (n is has the form a^{b} with $b>1$) then output COMPOSITE
$r:=2$
while $(r<n)$ \{
if $(\operatorname{gcd}(n, r)$ is not 1$)$ then output COMPOSITE if (r is prime greater than 2) then \{ let q be the largest factor of $r-1$
if $(q>4 \operatorname{sqrt}(r) \log n)$ and $\left(n^{(r-1) / q}\right.$ is not $1(\bmod$ $r)$) then break
\}

$$
r:=r+1
$$

\}
for $a=1$ to 2 sqrt(r) $\log n\{$
if $\left((x-a)^{n}\right.$ is not $\left.\left(x^{n}-a\right)\left(\bmod x^{r}-1, n\right)\right)$ then output
COMPOSITE
\}
output PRIME;

Interesting Problem: Graph Isomorphism (2015)

- László Babai (November 2015)
- Easier than NP
- Harder than P
- Moved problem closer to P
- Zero-Knowledge Proof
- Blind Testing

NP-Complete Problems

- Graph Theory
- Graph 3-Colorability
- Longest Path

