
COSC 201 – Lab #4 
LinkedList vs ArrayList 

 
Purpose: Practice using the Linked List class from the API 
 
Tasks: 

1.) Open Eclipse and start a new Java Project called LinkedList Project 
 

2.) Add a new class called LLPractice. 
 

3.) Your task: for this lab, you will be comparing the insertion and removal speeds of 
ArrayList and LinkedList. 
 

a. First, create two lists: an ArrayList of Doubles called testlist1 and a 
LinkedList of Doubles called testlist2. Note, if you aren’t type specifying 
your lists correctly, there will be a deduction assessed. 

b. Second, in main, get the first command-line argument and store it as an 
integer n. Randomly generate n doubles and insert them at random indices 
in testlist1. The easiest way to do this is to generate a random int from 0 
to testlist.size(), inclusive, and use the add(index, element) method from 
LinkedList. 

c. Third, remove 1/4 of those elements, again picking random indices. 
d. Fourth, do b. and c. with testlist2. 
e. Add in timing code for both sets of code. To help you out, here’s the 

timing code, with helpful comments on where to insert your code from b, 
c, and d. Test with command line arguments of 100, 1000, 10000, and 
100000. 
 
public static void main(String[] args){ 
 

//declaration and instantiation of lists 
//process command-line argument 
 
long starttime = System.nanoTime(); 
//testlist 1 code 
long totaltime = System.nanoTime() - starttime; 
System.out.println(“ArrayList insertion and removal 
time: “ + totaltime + “ ns”); 
 
starttime = System.nanoTime(); 
//testlist 2 code 
totaltime = System.nanoTime() - starttime; 
System.out.println(“LinkedList insertion and removal 
time: “ + totaltime + “ ns”); 
 

} 
 



4.) In the comments of your submission (not in your code!) describe your 
observations in regards to the timing results that you see when you run your code. 
 

5.) Turn in your properly commented code via Blackboard by 11:59 Monday. You 
may work on this lab in pairs. 

 
Grading expectations: this is a two part lab – the implementation, but also the reflection. 
Possible deductions: 
 
 * Missing one of the two data structures. 
 * Missing timing code. 
 * Not using command line arguments. 
 * Lack of comments – comment block at the top of the file 
 * Lack of comment reflection as noted in #4. 
 * Not doing the correct type specification for the lists. 


