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Abstract. This paper gives an algcmthm for solving linear programming problems. For a problem

with tz constraints and d variables, the algorithm requires an expected

O(d’n) + (log n)o(d)d’’+(’(’) + o(dJA log n)

arithmetic operations, as rz ~ ~. The constant factors do not depend on d. Also, an algorlthm N

gwen for integer hnear programmmg. Let p bound the number of bits required to specify the
ratmnal numbers defmmg an input constraint or the ob~ective function vector. Let n and d be as

before. Then, the algorithm requires expected

0(2d dn + S~dm In n) + dc)’d)~ in H

operations on numbers with d O(1~p bits ~~ ~z + ~, where the constant factors do not depend on d

or p. The expectations are with respect to the random choices made by the algorithms, and the

bounds hold for any gwen input. The techmque can be extended to other convex programming
problems. For example, m algorlthm for finding the smallest sphere enclosing a set of /z points m
Ed has the same t]me bound

Catcgor]es and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimlzatlon—o-zteger prog~urzv

nurzg, notzlt}zear pro~aw[mtng; G.3 [Mathematics of Computing]: Probability and Statistics

General Terms: Algorithms, Theory

1. Introduction

In some applications of linear and quadratic programming, the number of

variables will be small. Such applications include Chebyshev approximation,

linear separability, and the smallest enclosing circle problem. Megiddo [1984]

gave an algorithm for linear programming that requires 0(2z”n ) time, where n

is the number of constraints and d is the number of variables. (Unless

otherwise indicated. we assume unit-cost arithmetic operations.) This time

bound is optimal with respect to ?Z, and acceptable when d is very small.

Variant algorithms have been found with the slightly better time bound

0(3~-n) [Clarkson 1986; Dyer 1986]. Unfortunately, Megiddo’s approach must

take Q( d! n) time, since it recursively solves linear programming problems with

fewer variables [Dyer 1986], Dyer and Frieze [1989] used random sampling

[Clarkson 1987; Clarkson and Shor 1989] to obtain a variant of Megiddo’s
algorithm, with an expected time bound no better than O(dJ~n ). This paper
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gives an algorithm requiring expected time O(d~rz) + (log n)O(d)~/z+ ‘(1) +

0(d4fi log n), as n - CJ,where the constant factors do not depend on d. The
leading term in the dependence on n is O(dzn), a considerable improvement

in d. The second term arises from the solution by the algorithm of 0( dz log n)

“small” linear programs with O(dz ) constraints and d variables. The solution

of these linear programming problems with the simplex algorithm requires
O(d),~\?+~(l) t.line. The third term is discussed in Section 3.

Lenstra [1983] was the first to show that integer linear programming prob-

lems can be solved in polynomial time when the number of variables is fixed.

His algorithm was subsequently improved [Frank and Tardos 1987; Kannan

1977; see also Babai 1985 and Feit 1984], so that the fastest deterministic

‘(~)n q operations on dalgorithm for this problem requires d 0(1 ‘p-bit numbers.

Here p is the facet complexity (or row complexity) of the input, the maximum

number of bits used to specify an input inequality constraint. (The value P is

required also to be larger than the number of bits specifying the objective

function vector. This condition can be avoided using the techniques of Frank
and Tardos [1987].) The new algorithm requires expected

0(2~rz + 8~fi in n)

row operations; such an operation is just the evaluation of an input inequality at

a given integral point. The rows have no more than q bits; the integral points

can be specified with 7d3p bits. The algorithm also calls Lenstra’s algorithm for

several “small” integer programming problems. This gives the second term in

the operation bound. When n > d, the new algorithm is substantially faster

than Lenstra’s.

The key idea of the algorithms is random sampling, applied as in Clarkson

[1987] and Clarkson and Shor [1989] to quickly throw out redundant con-

straints.

The next section presents the algorithm. In Section 3, a time bound is given

and proven. The integer programming algorithm is described and analyzed in

Section 4. The last section contains some concluding remarks.

2. Linear Programming

2.1. THE PROBLEM. We will consider a specific form of the linear program-

ming problem, and in this subsection, show that there is no generality lost in

assuming that the problem has a unique solution.

Suppose a system of linear inequality constraints Ax s b is given, where A

is a given n x d matrix, b is a given n-vector, and x is a d-vector (xl, ..., x~).

Each inequality in this system defines a closed halfspace H of points that

satisfy that inequality. The collection of these n halfspaces is a set S. The

intersection n ~. ~H is a polyhedral set @’(S).

Consider the LP (Linear Programming) problem of determining the maxi-

mum xl coordinate of points x satisfying all the constraints, or

x? = max{xll Ax < b}.

This is equivalent to a general version of the problem, using a change of

coordinates. (For background on linear programming, see, e.g., Schrijver [1986].)

For arbitrary S, this version of the problem may have no solutions: either Y(S)

is empty and the problem is infeasible, or x I can be arbitrarily large, and the
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problem is unbounded. Moreover, the problem may be bounded and feasible,

but with many points in Y(S) with the same maximal xl coordinate. It will be

convenient for describing the algorithms to change the problem slightly so that

the LP problems given as input have exactly one solution.

First, the issue of feasibility. As is common, we’ll split the LP problem into

two phases: phase 1, finding a feasible point, and phase 2, finding the solution.

As in Gill et al. [1991, 7.9.2], for example, the phase 1 problem can be solved by

solving the LP

max{tl Ax + tl S b, t < O],

where 1 is the n-vector of 1‘s. This problem is feasible, with a feasible point

readily obtainable. If the optimum t is negative, the original problem is

infeasible. Otherwise, we have a feasible point for the original problem.

Note that if we have a feasible point X. = Y(S) for an LP problem, the

problem with constraints A(x – XO) s b – AxO has the origin O as a feasible

point, and its solution y gives a solution y + XO to the original problem.

These considerations show that an algorithm for solving LP problems that

have O = 9(S) can be used to solve general LP problems; it will be clear that

there is no asymptotic increase in complexity. Hereafter, we’ll assume that an

input LP problem has O G 9(S), or equivalently b > 0. This will be useful in

defining the solution to an unbounded problem.

If a given LP problem is bounded, we will use the minimum norm solution,

that is, the point x*(S) with Euclidean norm 11x*(S)IIQ equal to

min{llxllzlx =9*(S)},

where W*(S) is the convex polytope 57(S) n {xlxl = x:}. A simplex-like

algorithm to find such a solution is given in Gill et al. [1991, 5.3.3]. Note that

the minimum-norm solution is unique: if u and 1 are two distinct minimum-

norm solutions with u “ u = u . LI = z, then c + (u + L))/2 =@*(S) and c . c <

z.

Thus, we may assume that the given LP problem has O ~ 9(S), and if

bounded, has a unique solution. We can define a unique solution even when

the given LP problem is unbounded, so that points with arbitrarily large x ~

coordinates are in 9(S); Here, the solution will be a ray with an endpoint of 0,

in the direction of x*(S), where S is the set of constraints Ax < 0, together

with the constraint x ~ = 1. Plainly this problem is bounded and has O e Y(S);

thus, its unique solution gives an unbounded problem a unique solution ray.

Note that a ray x*(S) c 9(S), since O G 9(S). Because of this, we will say

that X*(S) satisfies all the constraints of S. In general, a ray z will be said to

satisfy a constraint halfspace H just when z c H; otherwise, z violates H.
We now have, with no loss of generality, a version of the linear programming

problem that always has a unique optimum solution; finding such a solution

can be done by a simplex or simplex-like algorithm. The algorithms described

below will call such an algorithm for “small” subproblems, and thereby obtain

solution points or rays.

2.2. THE ALGORITHM. Actually, four LP algorithms will be mentioned in

this section, including the simplex-like algorithm, called by invoking a function

x;(S). A recursive algorithm x;(S) will be introduced, and an iterative algo-

rithm x:(S). Finally, a mixed algorithm x:(S) can be defined: it is a version of
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the recursive algorithm that uses the iterative algorithm for the recursive calls.

The motivation for the mixed algorithm is to have a time bound with a leading

term O(dzn), while avoiding the larger number of calls to x: of the recursive

algorithm.

The recursive algorithm is based on the following facts: the optimum is

unique, and is determined by some d or fewer constraints of S. That is, there is

a set S* c S of size d or less such that x*(S* ) = x*(S), so the optimum for S*

alone is the same as for S. The constraints in S \ S* are redundant, in the

sense that their deletion from S does not affect the optimum.

The main idea of the recursive algorithm is the same as for Megiddo’s

algorithm: throw away redundant constraints quickly. The further development

of this idea is very different, however, The algorithm builds a set V* c S over

several phases. In each phase, a set V c S \ V* is added to V*, The set V has

two important properties: its size is no more than 2fi, and it contains a

constraint in S*. After d + 1 phases, V* contains S*, and also V* has

O(dfi) elements. That is, the algorithm quickly throws away the large set of

redundant constraints S \ V*. The algorithm proceeds recursively with V*,

and the recursion terminates for “small” sets of constraints. For these con-

straints, the appropriate optima are found using the simplex algorithm x:(S).

The algorithm is given in pseudo-code in Figure 1. The optimum x*(S) is

computed as follows. Let Cd = 9d2. If n s Cd, then compute the optimum

x*(S) using the simplex algorithm. If n > Cd, then repeat the following, with

V* initially empty: let R c S \ V* be a random subset of size r = dfi, with

all subsets of that size equally likely. Let X* - x* (R U V*), determined

recursively, and let V be the set of constraints violated by x*. If IVI < 26,

then include V in V*. (The value 2fi is twice the mean of IV 1, which is

= dn/r, as discussed in Section 3.) If V is empty, then exit the algorithm,

returning x* as x*(S). Otherwise, stay in the loop.

The iterative algorithm is based on a technique that will be termed iterative

reweighing, (This was inspired by Welzl [1988], who applied the idea to

half-space range queries; a similar idea appeared in Littlestone [1987], where it

was applied to learn ing.) As in the recursive algorithm, a random subset is

chosen, and also the set V of constraints violated by the optimum for that

subset. However, we attache integer weights to the constraints, and choose

random subsets by picking constraints with probabilities proportional to their

weights. Since V contains a constraint in S* (if nonempty) we know that the

constraints in V are “important,” and so increase their weights. This process is

iterated, and eventually the constraints in SX have large enough relative weight

that the random subset we choose contains S*.

function x;(S set.of.halfspaces)
return x* : LP_opttmum;

V’ + (j; cd + 9d2;

if n < cd then return z;(S);

repeat
choose R c S \ V* at random, IRI = r = dfi FIG. 1. The randomized function x; for

z“ +--Z:(RU V*); LP.

V + {H e S I z“ violates H}
if IV I < 2fi then V* + V* UV

until V = ~;

return x’ ;
end function x*;
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The iterative algorithm is given in pseudo-code in Figure 2. Every constraint

H G S has an integer weight w~, initially one, and W(V) denotes ~~. f,’~* for

V c S. The random subset R is chosen without replacement from the multi-

set corresponding to S, where the multiplicity of H G S is w~. That

is, we (conceptually) choose H = S with probability w(H)/w( S), then set

w~ = w~ – 1, and repeat r times. (The resulting set R may be smaller than r,

but this is actually an advantage.)

As noted above, the function x1(O is simply XT@), With the recursive call

replaced by a call to x:(S).

3. Time Complexity Analysis

Two lemmas are needed for the time bound, One shows that V contains a

constraint of S*, and the other shows that V is expected to be small.

LEMMA 3.1. In the algorithms of Section 2, if the set V is nonempty, then it

contains a constraint of S*.

Note that a constraint of S* contained in V is not in V*, since the

constraints of V* are satisfied by construction.

PROOF. Suppose, in the algorithms, that X* is a point, and that on the

contrary, V # @ contains no constraints of S *. Let point x > y if (xl, –11x112)

is lexicographically greater than or equal to ( Y1, – IIy II2). We know that X*

satisfies all constraints in S*, and so x*( S*) > x*. Since R U V* c S, we know

that X* > x*(S) = X* (S*), and so X* h the same X1 coordinate and norm as

x*(S*). There is only one such point in @(S*), so x* = x*( S*) = x*(S), and V

must be empty. A similar argument holds if x* is a ray. ❑

The next lemma says that V is expected to be small.

LEMMA 3.2. Let V* c S, and let R c S \ V* be a random subset of size r,

with IS \ V* I = n. Let V c S be the set of constraints liolated by x*(R U V*).

Then the expected size of V is no more than d(n – r + I)/(r – d).

Note the slightly different meaning of n used here.

This lemma is a corollary of results in Clarkson and Shor [1989, Section 4].

For clarity and completeness, the proof of the results in Clarkson and Shor

[1989] will be specialized for this particular case. The intuitive idea is that since

x* (R U V*) violates no constraints of R U V*, itviolates few constraints of S.

function x: (S set.of-halfspczces)

return z* LP. opttmum,

for ffESdowH +lod; Cd-9d2,

if n < Cd then return z:(S);

FIG. 2. The randomized function x: for LP.

repeat

choose R C S at random, II+ = r = cd,

x* + X:(R),

V + {HE S I z“ wolates H}

if w(V) < 2w(S)/(9d – 1)
then for H E V do wH + 2’WH od;

until V = ~,

return x* ;

end function Z*;
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After these results were first reported, Seidel found a short and elegant

proof [Seidel 1991].

PROOF. We will assume for the moment that the given problem is nonde-

generate, in that no d + 1 – k hyperplanes meet at a k-flat; in particular, no

d + 1 hyperplanes contain a common point.

We begin by putting X* (R U V*) in a larger class of “candidate” optima.

That is, x*(Z? U V*) is a member of a set

s~={x*(T uP’*)lTcs\ v*},

We can similarly define

YR= {X*(TU V*) IZ- CR},

Plainly %R c ~~, and x* (R U V*) is the unique member of ~R that satisfies all

the constraints in R.

For a given x G 9S, let 1x1 denote the number of constraints of S that it

violates, and let 1X be the indicator function for x, so that IX = 1 when
X=X*= x* (R U V*), and 1X = O, otherwise. That is, 1X is a random variable

whose value depends on the random choice of R. With these definitions, the

expected size of V is

where PX is the probability that x = x*. What is the value of PI? Since the

subsets of size r are equally likely, PX( ~ ) is the number of subsets of size r

that have x = X*. We need to count the ~umber of such subsets. For x to be

x*, two conditions must hold: x must be in YR, and x must satisfy all the

constraints of R. Consider the minimal set T of constraints such that x = x* (T

U V*). If x G YR, then T c R. Moreover, the nondegeneracy assumption

implies that T is unique, and has no more than d elements. Let iX s d denote

the size of T. Then for x to be X*, iX given constraints must be in R, and the

remaining r – ix constraints must be from among the n – Ix I – iX constraints

in S \ V* that neither define x nor are violated by x. We have

p=r~~’~ir).
x

()nr
Now since

we have
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The bound for El VI follows by showing that the sum is no more than d. By a

counting argument as above, the summand is the probability that x is a

member of Y—Rthat violates exactly one constraint of R. By an indicator

function argument as above, the sum is the expected number of x = 9R that

violate exactly one constraint of R. However, for any set R, the number of

such x is no more than d: such an x is x*(R U V* \ {H}), for some

constraint H, and x* (R U V* \ {II}) = X* (R U V*) unless H is one of the d

or fewer constraints determining X* (R U ~“ ).

Under the nondegeneracy assumption, we have El VI < d(n – r + I)/(r–

d). It remains to check that the complexity analysis follows through when the

input set is degenerate. Given a degenerate LP problem, we will show that

there is a “perturbed” version of the problem such that the expected size of

the set V in the perturbed problem is no smaller than in the original. The

perturbation idea goes back to Charnes [1952], and is equivalent to the

lexicographic tie-breaking used to prevent cycling in the simplex algorithm. The

idea is that the vector b is replaced by the vector b + (~, e~, , . . . ~’), where

~ > 0 is very small. (A similar perturbation is added to the constraints for ~ in

the unbounded case.) The resulting system is nondegenerate, in the sense

discussed at the beginning of the proof. Moreover, each x = =~ in the original

problem is associated with a subset of Y?, where S’ is the corresponding

perturbed constraint set. For given x G Y~ and T c S with x =x* (T U P“ ),

the optimum x* (T’ u V*) is in the subset associated with x, where T’ is the

perturbed version of T. Also, whenever x =X* (R U V*), some x’ associated

with x is the optimum for the corresponding perturbed problem, for suffi-

ciently small c, The optimum x’ violates at least as many constraints as x does.

Thus, the expected size of the set V in the perturbed problem is no less than

that in the original problem, and the bound for E IV I holds in general. ❑

We can use this lemma to show that progress will be made: that is, say that

an execution of the loop body in x: is successjid if the test IVI < 2A returns

true, and define an analogous condition for x: and x;. Then, the previous

lemma easily implies the following:

LEMMA 3.3. The probabilip that any given execution of the loop body is

successjid is at least 1/2, and so on auerage two executions are required to obtain a

successjid one.

PROOF. From the previous lemma, the expected value of IVI in x: is

bounded by d(n – r + I)/(r – d), which is no more than 6 for r > cZ6. By

Markov’s inequality, the probability that IP’ I exceeds twice its mean is no more
than 1/2.

For x;, we take V* = @ in the previous lemma, and allow S and R to be

multisets with n = w(S). The result follows analogously. ❑

THEOREM 3.4. Giuen an LP problem with b >0, the iteratiLe algorithm x:

requires

O(d2n log n) + (dlogn)O(d)d’z+ O(l),

expected time, as n + ~, where the constant factors do not depend on d.
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PROOF, We will show that the loop body of the algorithm is executed an

expected O(d log n) times, by showing that w(S* ) grows much faster than

W(S), so that after O(d log n) successful iterations, either V = @ or w(S* ) >

w(S), a contradiction.

Our argument is similar to those in Littlestone [1987] and Welzl [1988]. By

Lemma 3.1, the set V must contain a constraint of S*. Therefore, some

H = S* is doubled in weight during a successful execution of the loop body.

Let d’ = Is* 1; after kd’ successful executions of the loop body, we have

w(S*) = ~~e~.w~ = , where w~ = 2’H for some i~ and XH=~+iH > kd’. It

easily follows that the minimum possible value of w(S* ) after kd successful

iterations is 2kd’.

On the other hand, when the members of V are doubled in weight, the total

increase in w(S) is w(V) s 2w(S)/(9d – 1). That is, upon a successful execu-

tion, the new value of w(S) is no more than (1 + 2/(9d – 1)) times the old

value. After kd’ successful iterations,

(
2

)

Ld’

w(s) < 1 + ~ ~ e2M’/’(Yl)n)n

9d --1

When k > ln(rz/d’)/(ln 2 – 2d’/(9d – l)), we have w(S* ) > w(S), so after

kd’ = O(d log n) successful iterations, the set V must be empty. (In fact, r can

be smaller than Cd and give the same, but no better, result.) Hence, by Lemma

3.3, the iterative algorithm stops after an expected O(d log n) iterations.

It remains to bound the time required by the loop body. Vitter [1984] gives

an algorithm for random sampling that is readily adapted to obtain weighted

samples like R in O(n) time, using the observation that w(S) = n“tl ) during

the algorithm. Plainly, determining V requires O(dn). The simplex algorithm

takes do(l) time to visit a vertex of 9(S), and visits each vertex at most once.

()This gives a time bound ,~;j do(]) for simplex, or O(d)[~/z+ ‘(1) using Stirling’s

approximation. (This also bounds the time for finding the optimum with

smallest norm.) Therefore, the loop body requires O(dn) + O(d)~j~ + ‘(1’, and

the bound follows. ❑

THEOREM 3.5. Algorithm x;, requires

O(d’n) + (d’ log n) O(d)d’L+O(l) + 0(d4fi log n)

expected time, as n ~ W, where the constant factors do not depend on d.

PROOF. We will continue to assume that b >0 until the end of the proof.

The set V* grows by at most 2& at each successful iteration, with at most

d + 1 successful iterations needed. The maximum size of R U V* is therefore

W, where c, is 9d2. Let ~.(n) be the expected time required by x;, for a
problem with n constraints (and d variables), and similarly define ~(n). Since

the probability that an iteration is successful is at least 1/2, the time required

to find acceptably small sets V is bounded by 2~(@), for a total of

2(d + 1)~(~) over all phases. The time required to test that a given

constraint is satisfied by a computed optimum is O(d), for a total of 0( dzn)
over all phases. For n > Cd, the expected time Tn(n) is bounded by

~~(n) s 2(d + 1)~(~) + O(dJn),

where the constant does not depend on d. The bound follows. ❑
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4. Integer Linear Programming

4.1. THE PROBLEM. This section gives an algorithm for finding an optimum

for the integer linear programming (ILP) problem

max{cxl Ax S b; x integral},

where A is an n x d matrix, b an n-vector and c a d-vector, and the entries of

A, b, and C are rational numbers. As before, S is the set of constraint

halfspaces associated with A. In this section, x’(S) will denote the solution to

the above problem (not the corresponding LP relaxation); as discussed below,

we can assume that the optimum is bounded; it will be convenient here to

assume that .x* (S) is the lexicographically maximum point achieving the

optimum value. This last condition assures that X*( S) is unique.

The optimum can be forced to be bounded by introducing new constraints.

Such constraints should not change a finite optimum, however. We can use the

proof of Schrijver [1986, Corollary 17.lc] here, which shows that if q is the

facet complexity of X S ), and the ILP has a finite optimum, then every
coordinate of that optimum has }ize no more than K~ = 2 d~q + [log~( n + 1)1

+ 3. We may add to S the set S of 2 d constraints

Ixll s 2K’ + 1,

for 1 < i < d, to obtain a bounded polytope 9( S U ~) with the sam~ optimum

if that optimum is finite. Moreover, no integral point in W(S U ~) has size

more than 7d&, attained when d of the new constraints are tight.

Thus, we may assume that the optimum solution to the ILP is bounded;

when determining X*( R) for R c S, we can make the same assumption by

finding :* (R U S) instead. Hereafter, in this section, x*(R) will denote

x*(R U ~].

4.2. THE ALGORITHM. The starting point for the new algorithm for ILP k

the following lemma due to Bell [1977] and to Scarf [1977]; see also Schrijver

[1986].

LEMMA 4.2.1. There is a set S’ c S with IS* I < 2~ – 1 and with x*(S) =

X*(S*).

That is, as with LP, we have the optimum determined by a “small” set. The

ILP algorithms are simply variations on the LP algorithms, with sample sizes

using 2Cj rather than d, and using Lenstra’s algorithm in the base case. Another

necessary modification is due to the fact that S* is not necessarily unique. As a
result, we will use the following bound, giving weaker results than Lemma 3.2.

This bound is a corollary of the results in Clarkson [1987]. (See also Haussler

and Welzl [1987] and Spencer [1974].)

LEMMA 4.2.2. Let V* c S, and let R c S \ V* be a random subset of size

r > 2<!+ 1, with IS \ V* I = n. Let V c S be the set of constraints Liolated b}’

x* (R U V*). Then with probability 1/2, IV I s 2~ + ]n(ln r)/r.

PROOF. We will assume that V* is empty; the case where V* is not empty

can be handled similarly. Let Y= and Y—Rbe defined analogously to those in
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Lemma 3.2. Let m = 2d – 1. By the previous lemma, x*(R) = x*( R’) for

some R’ c R with IR’ I < m. For k < n, the probability that Ix*(R) I > k k
bounded above by

z ~ Pr{x*(R’) =x*(R)},

O<t<rn R’CS, lR’l=i

lx*(R’)l>k

since the probability of the union of a set of events is no more than the sum of

the probabilities of those events. The probability that R contains given i-ele-

ment R’ c S, and that R contains none of the Ix* (R’ )1 > k constraints violated

by x*(R’), is no more than (“ ~~; ~)/(: ). The number of i-element R’c S

with Ix* (R’)1 > k is of course no more than (~). Therefore, Pr{l x* ( R)l > k} is

no more than

which is no more than

Using elementary bounds, this quantity is less than 1/2 for

k > 2~+1rz(ln r)/r. ❑

The modification for the ILP algorithms are as follows: for the recursive

algorithm, put the sample size at 2ddm, and use Lenstra’s algorithm when
II ~ .22d+5 d. With probability 1/2, the set V will have no more than v’=

constraints; require this for a successful iteration. For the iterative algorithm,

use a sample size of 2 2d+ 4(2 d + 4), with a corresponding IVI bound of

n(ln 2)/2~+ 3.

The analysis of the ILP mixed algorithm is similar to that for the correspond-

ing LP algorithm: the top level does expected 2d+ 1n row operations, and

generates 2d+ 1 expected subproblems each with no more than 2 ~+ 1l“

constraints. Solution of each subproblem requires expected 2d+ 1 in n itera-

tions, each iteration requiring 2 ~+ 1~= row operations and a call to

Lenstra’s algorithm with the same number of constraints. Using the fact that

the row operations are on vectors of size 0(d3 ) ~, and the bounds from Frank

and Tardos [1987], we have the following theorem:

THEOREM 4.2.3. The ILP algorithm x;, requires expected

row operations on 0( d3p)-bit uectors, and

do(d)p in n

expected operations on 0( do(l ‘q)-bit numbers, as n ~ W, where the constant

factors do not depend on d or p.
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5. Co~lcluding Remarks

These ideas should be applicable to other convex programming problems. For

example, the problem of finding the smallest sphere enclosing a set of points in

E’{ is amenable to this approach, and resulting algorithm has the same time

bound as the LP algorithm given. The weighted Euclidean one-center problem

and various L, approximation problems should also be amenable.

These results may be useful in obtaining insight into the observed time

complexity of various algorithms and heuristics for convex programming prob-

lems.

For IZ s d, the best previous result is Khachian’s algorithm [Khachian 1980],

requiring O(nd& ) operations on numbers with 0( dz ) p bits. By application of

Khachian’s algorithm instead of simplex, an algorithm is obtained that requires

0( ndz log n + d6p log n) expected operations. This is an improvement when

d = o((n/log n)L\3 ). (Khachian’s algorithm can be adapted to the problem of

finding the shortest vector in a convex set, and so minimum norm solutions can

be found with it.)

It is worth noting that a variant of the iterative ILP algorithm maybe useful

in the (common) situation where K = IS* I < 2d; here a sample size O(2dKd)

wi~l do, with fewer iterations to converge on S*. Since K is unknown, attempts

with K considered to be d, 2d, 4d, . . . . should be made, giving a time bound of

O(Kd2n log n) + KzdO(~)p log n

expected operations on do(l)q-bit numbers.

Several developments have occurred since the conference version of this

paper appeared. Adler and Shamir [1990] have shown that these ideas can be

applied to general convex programming. Chazelle and MatouSek [1993] have

derandomized the recursive algorithm, obtaining a deterministic algorithm

requiring d ‘f ~)n time. Alon and Megiddo [1990] have applied and extended the

ideas of this paper to a parallel setting.

Seidel [1991] gave a different randomized algorithm, requiring O(o!!n) ex-

pected time, with a much simpler analysis; Sharir and Welzl found a variant of

Seidel’s algorithm requiring time subexponential in d. Their algorithm is a

randomized instance of the simplex algorithm [MatouSek et al. 1992]. Kalai

[1992] was the first to find a subexponential simplex algorithm. Problem

instances have long been known for which versions of the simplex algorithm

require at least 2~ operations [Klee and Minty 1972]. These results cast new

light on the complexity of the simplex algorithm, and on the possibility that

linear programming problems can be solved in “strongly polynomial” time; an

algorithm with such a bound would need ( nd)c)( 1) operations, with the number

of operations independent of the size of the numbers specifying a problem
instance.
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