
Efficient Randomized Algorithms for Some Geometric Optimization

Problems*

Pankaj K. Agarwalt Micha Sharir$

Abstract

In this paper we first prove the following combinatorial

bound, concerning the complexity of the vertical decom-

position of the minimization diagram of trivariate func-

tions: Let > be a collection of n totally or partially de-

fined algebraic trivariate functions of constant maximum

degree, with the additional property that, for a given pair

of functions ~, ~’ c F, the surface ~(z, y, z) = ~’ (z, y, z)

is xy-monotone (actually, we need a somewhat weaker

property—see below). We show that the vertical decom-

position of the minimization diagram of F consists of

0(n3+’) cells (each of constant complexity), for any e >0.

In the second part of the paper we present a general tech-

nique that yields fast er randomized algorithms for solving

a number of geometric optimization problems, including

(i) computing the width of a point set in 3-space, (ii) com-

puting the minimum-width annulus enclosing a set of n

points in the plane, and (iii) computing the ‘biggest stick’

inside a simple polygon in the plane. Using the above

result on vertical decompositions, we show that the ex-

pected running time of all three algorithms is O(n3i2+e),

for any & >0.

*Work on this paper by the first author has been supported
by NSF Grant CCR-93-01259, an NYI award, and matching
funds from Xerox Corporation. Work on this paper by the sec-
ond author has been supported by NSF Grants CCR-91-22103
and CCR-93- 11127, by a Max-Planck Research Award, and
by grants from the U.S.-Israeli Binational Science Foundation,
the Israel Science Fund administered by the Israeli Academy
of Sciences, and the G. I. F., the German-Israeli Foundation for
Scientific Research and Development.

t Department of Computer Science, Box 90129, Duke Uni-
versity, Durham, NC 27708-0129

$ School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Im-ael, and Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012, USA

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee andlor s~ecific ~ermission,.-------- .
11th Computational Geometry, Vancouver, B.C. Canada
G 1995 ACM 0-89791 -724 -3/95/0006 ...$3.50

1 Introduction

In this paper we present a general technique that

yields faster randomized algorithms for the following

problems:

1.

2.

3.

Computing the width of a set of points in IR3.

Computing an annulus of minimum width that

contains a given set of points in the plane.

Computing a longest segment that can be placed

inside a simple polygon in the plane.

In order to achieve a fast implementation of our

technique, we use the following combinatorial result,

which is derived in the first part of the paper. Let

F be a collection of n totally or partially defined al-

gebraic trivariate functions of constant maximum de-

gree, with the following additional $y-monotonicity

property: For any pair f, f’ c f, the zy-plane can be

decomposed into a constant number of faces, each of

constant description complexity, such that, for every

face c, the surface !(z, ~, z) = j’(~, y, z) is the graph

of a continuous bivariate function (of z and y) over

the interior of c. The lower envelope EF of F is the

pointwise minimum

E7(z, y,z) = ~$ f(X, y,Z) ,

and the minimization diagram MF is the projection

3. That is, MF is a decom-of the graph of EF onto R

position of iR3 into relatively-open connected cells of

dimension O, 1, 2, and 3, so that, over each cell, EF is

attained by a fixed subset of functions of 7 (and/or

of function boundaries). It is known [22] that MF

haa 0(n3+&) faces.

We prove that the vertical decomposition of MF

also consists of 0(n3+’) cells, each of constant de-

scription complexity. See below and [7, 9, 13, 23]

for the definition of vertical decompositions. Briefly,

this is the only known general-purpose technique for

326

decomposing cells of arrangements of low-degree al-

gebraic surfaces in higher dimensions into a reason-

ably small number of subcells of constant complex-

ity. Such a decomposition is a prerequisite to many

randomized incremental or divide-and-conquer algo-

rithms involving arrangements of this kind. Unfor-

tunately, the known upper bounds on the number of

resulting subcells are much higher than the actual

complexity of the cells being decomposed, and this

affects adversely (the upper bounds one can prove on)

the complexity of the relevant algorithms. Hence any

result, like the one we prove here, which establishes

nearly-tight bounds for the size of vertical decompo-

sitions, is significant, as indeed will be demonstrated

below.

Our bound on the vertical decomposition imme-

diately leads to a data structure, of size 0(n3y’), for

efficient point location queries in the region below EF:

For a point x = (al, a2, a3, a4) in iR4, we can deter-

mine in O(log n) time whether a4 < EF(al, a2, U3).

The technique for constructing this data structure

crucially relies on the existence of a vertical decom-

position of this region with near-cubic complexity.

We next observe that each of the three optimiza-

tion problems mentioned above can be reduced to the

problem of computing a closest (or farthest) pair be-

tween two sets of objects in Ii@, under some appro-

priate (pseudo-) distance function. That is, we define

two sets of objects A, B and a function 6: A x B ~

R+ U {O}, and reduce the original optimization prob-

lem to that of computing 6“ = mina@,~~B f5(a, b).

Actually, we need to solve several instances of the

closest-pair problem, but we show that the overall

running time is still bounded by (a polylogarithmic

factor times) the time complexity of the algorithm

for computing J*. We use a randomized divide-and-

conquer approach to compute 6“, which is inspired

by the Clarkson–Shor algorithm [10] for computing

the diameter of a set of n points in 3-space. The

merge and the divide steps of our algorithm require a

data structure for point location in the minimization

diagram of a set of trivariate functions that satisfy

the aforementioned properties. Surprisingly, the zy-

monotonicit y property, which might be regarded as

a somewhat restrictive condition, is also satisfied for

each of the three optimization problems under con-

sideration. Using our bounds on the complexity of

vertical decompositions, we show that the expected

running time of our algorithms, for all three prob-

lems, is O(n3/2+&), for any & > 0. The previously

best known algorithms for these problems are due to

Agarwal et al. [1], and are based on Megiddo’s Pam-

metric search technique (see also [3, 6]). The expected

running time of the algorithms in [1] is 0(n17ill+&).

We consider the main contributions of this paper

to be the general algorithmic technique itself and the

bound on the size of the vertical decomposition, both

of which might be useful in other problems. Even

though Megiddo’s parametric search technique is a

very powerful paradigm, it typically leads to quite

complicated algorithms. Recently, there have been

several attempts [5, 11, 18, 19, 20] to present simpler

and more direct algorithms for some of the problems

that have traditionally been solved using parametric

searching. Our technique can be viewed as another

step in this direction.

The paper is organized as follows. We first es-

tablish in Section 2 our bound on the complexity of

the vertical decomposition. We then present in Sec-

tion 3 the general algorithmic technique for comput-

ing a closest pair, and exemplify it by applying it to

the width problem. We briefly discuss the minimum

width annulus and the biggest stick problems in Sec-

tions 4 and 5, respectively.

2 Complexity of the Vertical De-

composition

Let .T be a collection of n totally or partially-defined

algebraic trivariate functions of constant maximum

degree b that satisfy the following properties:

(Fl) If a function ~ 6 F is partially defined, then

we require that the set of points where f is un-

defined have measure O, in the following strong

sense: There is a constant number of algebraic

arcs of constant maximum degree in the zy-

plane (these arcs depend on ~), so that, for each

point (x, y) not lying on any of these arcs, ~ is

defined at all points (z, y, z), for any z G IL

(F2) For any pair of functions f, f’ c 7, the sur-

face !(z, y, z) = .f’(~, y, z) is $y-monotone, that

is, every z-vertical line (not passing through

any curve where f or f’ is undefined) crosses

this surface in exactly one point. Actually, we

somewhat relax this assumption, requiring only

that, for each such surface a, the xy-plane can

be decomposed into a constant number of re-

gions, each of constant description complexity

(i.e., described by a constant number of poly-

nomial equalities and inequalities of constant

maximum degree), so that, for each of these re-

gions c, the surface a is the graph of a contin-

uous bivariate function (of z and g) over the

interior of c.

These assumptions are rather restrictive, but, as we

will show below, and rather surprisingly, they hold

327

for several of the current main applications of lower

envelopes in 4-space, as listed in the introduction and

studied recently in [1, 3, 6]. We also assume that

the functions in F are in general position, as defined,

e.g., in [22]; it is easy to show, using a variant of the

argument given in [22], that this assumption does not

involve any loss of generalit y, and that our results also

hold for collections not in general position. Under

this assumption, for j = 0,...,3, the envelope EF

is attained by at most (or, if the functions in $ are

totally defined, exactly) 4 – j functions of F over

any j-dimensional cell of M7. We will use the terms

vertex, edge, face, and cell to denote, respectively,

O-dimensional, l-dimensional, 2-dimensional, and 3-

dlmensional cells of M$. Each vertex, edge, face, or

cell c of M7 will be labeled by the corresponding set

of functions of F attaining E7 over c. In particular,

the term j-cell will refer to a (3-dimensional) cell of

MF over which EF is attained by the function f.

The vertical decomposition of MF is defined in

the following standard manner. In the first decom-

position stage, we erect, for each edge e of M7, a z-

vertical wall from e, which is the union of all maximal

z-vertical relatively-open segments passing through

points of e and not meeting any other vertex, edge or

face of M7. The collection of these walls partitions

the cells of M= into subcells, so that each subcell

c is bounded from above and from below (in the z-

dlrection) by (portions of) a fixed pair of faces of MF;

c may also extend to infinity in either direction. In the

second decomposition step, we take each of these sub-

cells c and project it onto the zy-plane. We construct

the 2-dimensional vertical decomposition of the pro-

jection c*, by erecting a maximal y-vertical segment,

contained in the closure of c*, from each vertex of c*

and each (locally) z-extremal point on W. The col-

lection of these segments partitions c* into ‘pseudo-

trapezoidal’ subcells. Each of these subcells ~ induces

a subcell of c, obtained by intersecting c with the ver-

tical cylinder ~ x R over I-. The resulting collection

of subcells constitutes the vertical decomposition of

MF, which we denote by M;. Each of these cells has

constant description complexity, in the sense that it

is defined by a constant number of polynomial equali-

ties and inequalities of constant maximum degree (de-

pending on the maximum degree b of the functions of

7). See [7, 9, 23] for more details concerning vertical

decompositions.

Theorem 2.1 If F is a collection of trivariate func-

tions satisfying the assumptions made above, then the

number of subcells of M; is 0(n3+e), for any c >0,

where the constant of proportionality depends on E

and on the maximum degree b.

Proofi Let X be a collection of n trivariate func-

tions satisfying the above assumptions. It is easily

seen that, in general, the second vertical decompo-

sition step does not increase the complexity of the

decomposition by more than a constant factor, so it

suffices to bound the increase in the complexity of

MY caused by the first vertical decomposition step.

In other words, we want to count the number of pairs

(e, e’) of edges of M7, both bounding the same cell c,

such that there exists a z-vertical segment connecting

a point on e to a point on et and fully contained in

c. (We actually want to count the number of these

vertical segments, but, by assumption, this number

is larger than the number of pairs (e, e’) by only a

constant factor, depending on the maximum degree

b.) We say that such a pair (e, e’) of edges axe verti-

cally visible. Suppose c is an fo-cell, for some f. c F

(note that assumption (Fl) implies that there is no 3-

dimensional cell of M7 over which E7 is undefined).

Then e must be either a portion of an intersection

curve of the form f. = f 1 = f2, for some pair of

functions $1, f2 c 3, or a portion of the boundary of

an zy-monotone piece of a surface f“ = ~, for some

~ 6 ~. Similarly, e’ must also be a portion of an in-

tersection curve or of a boundary curve of the above

forms.

We estimate the number of vertically-visible pairs

of edges for which the vertical segment connecting

the edges crosses an fo-cell, separately for each fixed

fo E 7. Recall that, by assumption, each surface

fo = f Cm be decomposed into a constant number

of xy-monotone pieces, so that the xy-projections of

these pieces are pairwise disjoint. Consider the col-

lection 2(fo) consisting of all these xy-monotone por-

tions of surfaces of the form f. = f, for j E .T. We

regard each such portion as a partially defined func-

tion of z and y. It follows from assumption (Fl) that,

for each surface a E X(fo) contained in the graph of

fo = f, for some f E F, either all points lying ver-
tically above o (in the z-direction) satisfy f. > f

or all such points satisfy f. < f (this property may

fail at points lying on the boundary @ of u, but

this limit behavior does not affect our analysis). Let

Z+ (fo) (resp. Z– (fo)) denote the subset of surfaces

a c X(fo) for which the corresponding function f
satisfies f. > f (resp. fo < f) for all points lying

vertically above a (note that a function ~ may con-

tribute surfaces to both collections Z+(fO), X- (fo),

over pairwise-disjoint portions of the qpplane). It is

then clear that the union of all fo-cells is the same

as the region enclosed between the upper envelope of

Z- (jo) and the lower envelope of Z+ (fo). It then
follows from Theorem 3.2 of [2], concerning the com-

plexity of the region enclosed between two envelopes

in 3-space, that the complexity of the vertical de-

328

composition of all ~0-cells is O(n2+&), for any E >0.

Repeating this argument over all functions .fo c 7,

we obtain the bound asserted in the theorem. •1

Let C3 be the cell in the arrangement of .F ly-

ing below E3. The vertical decomposition of CX,

denoted as C;, can be obtained by lifting each cell

~ c M; to the cell

Since each cell of M; contributes exactly one cell

to C;, the latter also has 0(n3t’) cells. Similarly,

it follows that the vertical decomposition of the cell

lying above the graphs of all functions in Y also has

O(n3+e) cells.

Remark: An obvious open problem is to extend this
bound to vertical decompositions of minimization di-
agrams of more general trivariate functions. Using
recent analysis techniques, as those in [2, 22], we

can obtain an 0(n4+E) bound for the general case of

partially-defined trivariate low- degree algebraic func-

tions, but we conjecture that the correct bound is

near-cubic.

3 Width in 3-Space

The width of a set S of n points in R3 is the smallest

distance between a pair of parallel planes such that

the closed slab between the planes contains S, Al-

though the width of a set of n points in the plane

can be computed in O(n log n) time [17], the prob-

lem becomes considerably harder in three dimensions.

Houle and Toussaint [17] gave a simple 0(n2)-time al-

gorithm for computing the width in iR3, and raised the

open problem of obtaining a subquadratic solution.

Recently, Chazelle et al. [6] presented an O(n8/5+’)-

time algorithm, for any s > 0, which was subse-

quently improved by Agarwal et al. [1] to 0(n17/ll+&).

As observed in [6], and further exploited in [1], the

problem of computing the width in 3-space can be

reduced to the following dichromatic closest line-pair

problem: Given a set L of m ‘red’ lines and another

set L’ of n ‘blue’ lines in R3, such that all red lines

lie above all blue lines,l compute the closest pair of

lines in L x L’, where the distance between a pair of

lines 1,1’ E iR3 is

q{, 1’) = ~emnj,(i(p, q).

Let d(L, L’) = minle~, ~~c~~ d(l, r!?’) denote the dis-

tance between a closest pair in L x L’.

Before presenting the algorithm, we need to de-

scribe some geometric transforms, which will be cru-

cial for our algorithm. We can map each line 4 G

L, not parallel to the yz-plane, to a point ~(l) =

(al, CC2,q, a4) in R4, where y = alz + as is the equa-
tion of the zy-projection of 1, and z = azz + a4 is the

equation of the zz-projection of 1. For any fixed real

parameter b z O, we can also map a line t’ c L’ to a

surface T(l?’), which is the locus of all points @(l) such

that d(l, /’) = d and .? lies above /’. We refer to the
coordkates of thk parametric space as (1, f2, C3, $4.

Observe that any line parallel to the ~4.-axis inter-

sects y = 7(1’) in at most one point. If the corre-

sponding lines t in R3 lie in a vertical plane parallel

to/’ and not containing /’, then the intersection point

may not exist. It follows that y can be partitioned

into a constant number of surface patches, each of

constant description complexity, such that, for each

patch ~, all points of R4 lying vertically above ~ rep-

resent lines 1 in R3 that lie above t’ and d(l, 1’) >6,

and all points lying below ~ represent lines 1 that ei-

ther lie below 1’, pass through #, or lie above t“ and

d(l, 1’) <6. In other words, ~(1’) is the graph of a

partially defined function C4 = ~11(cl, &2, f3). For a

point @(l) = (al, a2, a3, a4), such that I lies above 1’,

if ~t~(al, a2, a3) is defined, then U4 > fe, (al, a2, a3)

if and only if d(i?, 1’) > 6, and a4 < f~l (al, a2, a3) if

and only if d(l, .!?’) < d. Let 7 be the collection {~t, [

1’ c L’}, and let UF denote the upper envelope of F.

For a line 1 ~ L with ~(l) = (al, a2, a3, a4), we have

a4 z U7(a1, a2, a3) if and only if d({l}, L’) z d. It is

easily checked that the functions fe, are all partially-

defined, algebraic functions of constant maximum de-

gree.

Lemma 3.1 (a) For any line 1’ c L’ and for any

fixed &l, ~2, so that& is not equal to the f~ -coordinate

of l’, the function fej (&l,&, fs) is defined for all &.
(b) For any pair of non-parallel lines 4!, l\ E L’ and

for any fixed fl, CZ, the equation

has a unique solution ~3, except when (&l, ~2) lies on

a certain critical line ~(f~, t;) that depends on l; and

/\, or when ~1 is equal to the &-coordinate of l; or

of 1; .

1For any ~~r of n~npar~lel and nonvertical lines ~ C L, ~’ ~ Proofi Part (a) is trivial: If <1,&2 are fixed, then
L’, we say that 1 lies above t’ if the vertical line passing through
the intersection point of the cc~-projections of t and 1?intersects

the spatial orientation of the corresponding line 1’ is

t above .!’. It is interesting to note that the requirement that fixed. If the xv-projections of g and .!?’do not have the

all red lines lie above all blue lines crucially affects the analysis same orientation, then Fty (<1, fz, &3) is defined for all
of the complexity of the resulting algorith-m. ~3. (If these projections have the same orientation,

then Fe! (&l, &, fs) is defined only when <2 is equal to

329

the &-coordinate of 1 and when & is such that ! and

1’ lie in the same vertical plane.)

As to part (b), let & be a solution of (l), and

let <4 = ~’; (&, &2, <3) = ~i.~(&l, &2, t3). The line ~“,

parametrized by (Cl,&,&,@, thus lies in the vertical

plane T(<3) : Y = CIX + &3, and, as is easily checked,
its slope in that plane, with respect to the coordinate

frame (u, z), where u is the axis orthogonal to the z-

axis, is equal to &./ ~~. Moreover, by definition,

1* is a common upper tangent line to the two cylinders

Cl, Cz of radius 6, whose symmetry axes are the lines

lj, f?j, respectively. Let Ki = Ki(&) = Ch il T(C3),

for i = 1,2. The sets K1 and Kz are two ellipses, and

the line t“ must be a common upper tangent to K1

and Kz in the plane n(fs) (this holds provided that

& is not equal to the &l-coordinate of l! or of Q. As
CSvaries, the plane 7r(&) translates parallel to itself,
and the two ellipses Kt (fs) also translate within that

plane, so that the positions of their centers are given

by two linear functions of (3. Moreover, for i = 1,2,

let w, = wi(~3) denote the point on K~(& so that the

+line tangent to Ki at Wi has slope <2/ 1 + ~~ and lies

above Kz. It follows that, as (s varies, wi ((s) moves

within the plane 7r(&3) as a linear function of &3, for

i = 1,2. Thus, & solves (1) if and only if the line

connecting W1(63) and wz (.!5) has slope &/~~

in T(E3). Thk equation is linear in &3, as easily fol-

lows from the above arguments, and so has either one

solution, no solutions, or infinitely many solutions.

To analyze when this equation has no solution,

or has infinitely many solutions, we represent the

above geometric reasoning in an algebraic form. It

is easily verified that the existence of a unique so-

lution to (1) is not affected if we translate lj and

t?! by any amounts (such a translation only changes

the constant term in the resulting linear equation),

so we may assume, with no loss of generality, that

both lines pass through the origin. Let (al, bl, cl),

(az, bz, C2) be two unit vectors lying, respectively, on

the lines lj, lj. The intersection S1((3) of Ii with

7r(&) is a point (a& bit, clt) that satisfies the equa-

tion blt = &lalt +&, so we have t = <3/(bl– CZ161),

which implies that sl (43) is the point

and, similarly, the intersection .92(~s) of lj with 7r(&)

is the point

(As above, these points are well-defined only when
& is not equal to the &-coordinate oft! or of lj.)

For i = 1,2, the point Wi ((3) is a translated copy

of Si (~3) by a fixed vector, independent of (3. The

coefficient of (3 in the equation (1) is thus easily seen

to be (proportional to)

C2 c1 (-<2 ‘2
al

b2 – a2& – bl – alfl)b2 – a2& – bl – al.$l “

Hence, the equation (1) does not have a unique solu-

tion only when this expression is O. That is,

cz – az<z c1 – al&

b2 - a2<1 = bl – al& ‘

which is easily seen to be a linear equation in & and

& (it does not vanish identically, unless 1{ and lj are

parallel). This completes the proof of the lemma. ❑

Lemma 3.1 implies that the collection 7 satisfies

the assumptions (Fl), (F2) of Theorem 2.1. Let C’z

denote the cell in the arrangement of ~ that lies above

the upper envelope of 7. In view of Lemma 3.1, The-

orem 2.1, the above discussion, and standard point-

location techniques, such as those in [7, 8], we obtain

Corollary 3.2 The vertical decomposition C; of CF

consists of O(n3+e) cells, for any .s > 0. Moreover,

CF can be preprocessed in time 0(n3+&) into a data

structure of size 0(n3+E), for any E >0, so that, for

any query point p, we can determine in O(log n) time

whether p c CF.

We are now in position to describe the algorithm

for computing d(L, L’). We will first present an out-

line of the algorithm, and then describe each of the

nontrivial steps in some detail.

ALGORITHM: CLOSEST-PAIR

1.

2.

3.

Let no be a sufficiently large constant, whose

value will be fixed later. If n s no, then we

compute d(l, l’) for every pair (1,-t’) e L x L’, in
O(m) time, and return the minimum distance.

Assume that n > no. Randomly choose a line
/0 E L and compute 60 = d({.to}, L’), in O(n)

time.

Set r = [m3i8/nl/s]. We partition L into k + 1
subsets Lo, Ll, . . . , Lk, with the following prop-

erties:

(i) k = 0(r3+’), for any e > O;

(ii) ifr=l, then k=l, LO= O, Ll=L;

(iii) for each 1< i ~ k,

[{1’ c L’ \ d({l’}, Li) < Jo}l ~ :;

(iv) Lo G {/c L I d({l}, L’) < 6.}; Lo maybe

empty (as is the case when r = 1).

330

4.

5.

6.

7.

For each 1 ~ i ~ k, we compute a set L; of size

at most n/r such that

L: 2 {1’ G L’ I d({t’}, Li) < & } ;

ifr=landk=l, we put L~= L’. Set

mi = IL,I and ni = lL~l.

For each 1 ~ i ~ k, we do the following: If

ni = O, we set d(Li, L:) = +CO. Otherwise, we

compute 6; = d(Li, L{) directly, using a dMer-

ent algorithm (detailed below). We then com-

pute al = mirq 6:.

If LO # 0, we compute JZ = d(Lo, L’) recur-

sively.

Return min{do, &, 62} as d(L, L’).

Next, we explain Steps 3–5 in detail, and analyze

their expected running time; the other steps are triv-

ial and need no further explanation. We will then

conclude the analysis by proving the correctness of

the algorithm.

Steps 3–4: We compute Li, L{, for 1 s i S k, using

a divide-and-conquer approach. We construct a tree

T, each of whose nodes v is associated with a subset

Lv ~ L and another subset L~ ~ L’. The root of the

tree is associated with L and L’ themselves. The sub-

sets associated with the leaves of T will correspond

to the sets Li and L:.

If r = 1 then T consists of a single node; we set

k = 1, L1 = L, Lj = L’, and Lo = 0. Next, assume

that r >1. Let s be some sufficiently large constant.

We choose a random subset X G L’ of size c1s logs,

where c1 is an appropriate constant independent ofs,

and compute C;, the vertical decomposition of the

cell CX lying above the graphs of all the functions

{.fu I ~’ E X} (defined in terms of the parameter
C50computed in Step 2). By Corollary 3.2, C+ has

0((s log S)3+’) cells. For each cell ~ 6 C*, we com-

pute the set L; s L’ of lines 1’ such that 7(1’) in-

tersects ~. By standard e-net theory [16], we have,

with high probability, ILJ I S n/s for every ~ c C;.

If IL; I > n/s for some ~ E C+, we choose another
random subset and repeat the above steps. Other-

wise, for each T c C% we compute the subset L~ z L

of lines 1 such that v(~) c ~. Set m~ = lL~ I and

n. = IL; 1. If Lr # 0, we create a child VT of the root

corresponding to T. We associate L7, L; with VT. If

lL~l < n/r, then v, is a leaf. Otherwise, v, is an

internal node of T, and we expand T further at VT by

applying the same procedure recursively to L~, L;.
By construction, the depth of T is at most [log, rl.

Since each node has at most 0((s log S)3+’) ,chlldren,

the total number of leaves in T is k S CZT3+E , for any

E’ > E and for some constant cz independent ofs and r

(but depending ons, 6’). We set Li, L: to ‘be the sub-

sets associated with the ith leaf of T, for i = 1,. ... k,

Finally, we set Lo = L – (J~=l Li. Note that a line f is

placed in Lo only when its image ~(l) lies below the

upper envelope of some collection {~tl I P C X}, for

some X G L’. Hence, by definition, all lines t G Lo

satisfy d({l}, L’) < do. In particular, 10 @ Lo, so

ILOI < m, a property that we will use below when

proving the correctness of the algorithm. Thk also

shows that Lo satisfies property (iv) of Step 3.

The sets Li, for 1 s i ~ k, are pairwise disjoint,

and IL{[S n/r, for all 1 < i S k. It thus remains to

show that

L{ z {1’ c L’ I d({d}, LJ < 6.}.

In fact, the following stronger claim is true, and fol-

lows easily by construction.

Lemma 3.3 For any node VT in T,

L; 2 L: = {1’ E L’ [d({t’}, L.) < do }.

Proofi We prove this by induction on the depth of

VT in T. The claim obviously holds for the root of T.

Suppose it holds for the parent vi of a node v,. Since
LT c Lc, obviously L; ~ L?, Let C% be the set of

cells that we constructed at vc. Then T c C} and,

for every 1 G L,, we have ~(l) c ~. Let t’ E L; and

let 1 be a line in Lr satisfying d(l, l?) < Jo. Then, by

definition, the point ~(t) lies below the surface Y(P).

Since r is unbounded in the +&l-direction, it follows

that ‘y(.!?’) intersects T. Moreover, by the induction

hypothesis, 4’ G L:, which implies that 16 L:, and

thus the claim is true for T as well. ❑

Hence, the sets Li, L;, for 1 s i s k, satisfy the

desired properties of Steps 3 and 4.

Next, we analyze the expected time spent in com-

puting these subsets. Let ~(a, b) denote the maxi-

mum expected time spent by the recursive algorithm

for Steps 34, where expectation is with respect to

the choices of random samples by the algorithm, and

where the maximum is taken over all sets L, L’ of

lines, as above, of respective sizes a, b. At each level

of recursion, X is chosen, with high probability, only

once, and we spend O ((slog S)3+E (a+ b)) time to com-
pute all the sets L,, L;, so we obtain the following

recurrence:

i(a, ~) S ~ ~(a,, ~.)+ c(slogs)3+C(a + b),
Tee;

where lC~l < C’(S log s)3+e, ~Tec; a~ S a, b~ g

b/s, and c, c’ are constants (depending on e). The

recursion stops when b s n/r, so $ (a, b) = O(1) for

b ~ n/r.

331

The solution of the above recurrence is

(
bs+,’ ~)f(a, b) SA alogb+~r ,

for any e’ > e; here A = A(d) is a sufficiently

constant depending on the value of E.

large

We prove this by induction on b, The inequality

obviously holds for b ~ n/r. For larger values of b,

we obtain, by the induction hypothesis,

C(S log s)3+e (a + b)

C(S 10g S)3+’ (a + b)

~ AU log b + a [C(S log s)3+e – A logs] +

; qg(slog S)S+’
1

()~ A alogb+b3+&’$,

because b > n/r, c’ > s, and A is chosen sufficiently

large. Since r = [rn3i8/nlisl, and initially a = m

and b = n, we obtain

~(m, n) = 0(m3J4+e’n314+” + ml+”+ nl+”).

Step 5: For each 1 ~ i ~ k, We compute d(Li, L:)

using a somewhat simpler version of the randomized

algorithm described by Agarwal et al. [1]. We give a

brief sketch of this variant.

(i)

(ii)

(ii)

(iii)

(iv)

Let no be some sufficiently large constant. If

ni ~ no, we compute d(l, l’) for all pairs .f26 L~,

t?’ 6 L\, in O(mj) time, and return the minimum

distance,

Assume ni > no. Choose a random subset A G

L! of size [ni/21; each subset of size [ni/21 is
chosen with equal probability.

Recursively compute & = d(Li, A).

Compute the set

B = {t?’ G L; – A I d(Li, {Z’}) < 6’}.

Compute d(l, /’) for all pairs 1?6 Li, 1’ G B,

and return the minimum distance (or output d’

if B is empty).

The correctness of the algorithm is obvious (see also

[1]), so we now analyze its expected running time.

For a line t?E Li, let

Using a standard probabilistic argument, it can be

shown that the expected size of B(t) is O(1). Since

B = ute~i B(z), the expected size of B is O(mz), and

the expected running time of Step 5(iv) is O(m~).

By reversing the dh-ection of the z-axis, setting

6 = 6’, and using Corollary 3.2, L; can be prepro-

cessed into a data structure of size O(m~+&), so that,

for each P G L; – A, we can determine in O(log mi)

time whether 1’ E B. The time spent in Step 5(iii)

3+e + ni log mi), which subsumes the ex-is thus O(m~

petted cost of Step 5(iv). The running time of both

steps can be improved, by a standard batching tech-

nique, to O(m~ni z/s+E + ~j+’); see [1]. Let $o(mi, ni)

denote the maximum expected running time for com-

puting d(Li, L:) by this algorithm, where the max-

imum is taken over all sets Li, L: of sizes m~, ni,

respectively. Then we obtain the following recurrence

p(mi, ni) < q(mi, [ni/21) + 0(mzn~’3+& + n]+’),

whose solution is easily seen to be

2/3+E
p(mi, ni) = O(m~ni + n:+’).

By the choice of the parameter r, the expected time

spent in Step 5 is thus

—— 0(m3/4+e’ ~3/4+-.’ + ml+.’ + ~l+.’),

The total expected time spent by the algorithm,

excluding the time spent in the recursive call, is thus
0(m3/4+&’ ns/A+e’ + ml+E’ + nl+&).

Recall that all lines 16 Lo satisfy d({l}, L’) < do.

Recall also that 10 was chosen randomly in Step 2. If
we sort the lines t G L in the nondecreasing order of

their distances d({l}, L’), then the probability that 1
is the ith item in this list is 1/m, and in this case we

must have ILO I < i. Let T(m, n) denote the maximum

expected time for the algorithm to compute cZ(L, L’),

where the maximum is taken over all sets L, L! of

sizes m and n, respectively. The arguments just given

imply that

1

c1m. for n ~ no,

c,n’+’ for n > no, m < n113,

T(m, n) ~ ~ ‘~] T(i,n)+

15.3
A(m3/4+c’n3/4+E’ + ml+d + ~l+e’)

for n > no, m > nli3.

The solution of the above recurrence is

Z’(m, n) ~ B(m3f4+’’n3i4+E’ + ml+e’ log n + nl+e’),

for any e’ > s and for some constant B = l?(d).

To complete the analysis, we finally show:

Lemma 3.4 Algorithm CLOSEST-PAIR computes the

distance 6“ = d(L, L’) correctly.

Proof: We prove the lemma by double induction on

m and n. If n < no then the correctness is trivial

(see Step 1). If m < n’i3 (i.e., r = 1), then the

algorithm is also correct, by the analysis of Step 5

given above. Suppose that m > n1i3 (so r > 1), and

that the algorithm computes 6“ = d(L, L’) correctly

for all sets of lines L and L’ such that ILI < m or

ILI = m and IL’I < n. Since the algorithm returns

the distance between a line of L and a line of L’, it

always returns a number at least as large as d“.

If d“ = 6., there is nothing to prove, because

Step 7 returns the minimum of &,&, and &. Sup-

pose 6“ < do. Let I c L, t’ E L’ be a pair of lines with

d(l,l’) = 6“. If 1 E Lo, then, d(L, L’) = d(Lo, L’) =

62. Since ILo I < m, as argued above, the algorithm

computes d(Lo, L’) correctly, by the induction hy-

pothesis, so d(L, L’) is also correctly computed.

If/ E L, for some 1< i < k, then, by construc-

tion, /? E L\, and therefore d(L, L’) = d(Li, L:) = &.

Since lLil S m and l.L~l S n/r < n, the claim follows

again by the induction hypothesis. This completes

the proof of the lemma. •1

Hence, we can conclude

Theorem 3.5 Given a set L of m red lines and a

set L’ of n blue lines in 11%3,such that all red lines

lie above all blue lines, d(L, L’) can be computed by a

randomized algorithm in O(m3i4+En3i4+& + ml+& +

nl+&) expected time, for any & >0.

Combining this result with the observations in [6],

which we omit here, and which show how the width it-

self can be computed using Algorithm CLOSEST-PAIR
as a subroutine, we obtain:

Corollary 3.6 The width of a set of n points in IR3

can be computed by a randomized algorithm whose ex-

pected running time is O(n3t2+’), for any E >0.

4 Minimum Width Anrmlus

Given a set S = {Pi, . . . ,p~} of n points in the plane,
we want to compute an annulus of the smallest width

that contains S, That is, we want to compute two

concentric circles, centered at a point & of radii rl, r2,

respectively, such that r2 – rl is minimized, subject

to the constraints rl ~ d(& pi) s rz, for each 1 ~ i s

n. For a given point x, let w(x) denote the smallest
width of an annulus containing S and centered at x.

Let pC, pf be the nearest and the farthest neighbors

of x in S, respectively, Then

W(X) = d(x, p~) – d(x, pc) .

Let VorC(S) (resp. Vor~ (S)) denote the closest

(resp. farthest) point Voronoi diagram of S, Ebara

et al. [14] observed that the center of a minimum

width annulus containing S is a vertex of VorC (S), a

vertex of Vor~ (S), or an intersection point of an edge

of VorC (S) and an edge of Vort (S) (see also [24]).

Based on this observation, they gave a rather sim-

ple 0(n2)-time algorithm for computing a minimum

width problem, which was improved by Agarwal et

al. [3] to 0(n8j5+’), and subsequently by Agarwal et

al. [1] to 0(n17/ll+c).

We first make the following observation, which
was missed in the earlier treatments of the problem

cited above, and which transforms the problem into

a width-like problem in lR3. We lift the points of

S to the paraboloid z = Z2 + y2 by the standard

lifting map (z, y) ~ (z, y, X2 + g2), then a circle C

of radius r with center (a, b) is mapped to the plane

C* : z = 2az+2bg+(r2–a2 –b2). A point p c IR2 lies

inside (resp. on, outside) C if and only if its lifted im-

age p“ lies below (resp. on, above) the plane C*, Thus

an annulus with center (a, b) and radii rl < r2 and

containing S is mapped to a pair of parallel planes

z = 2cM + 2bg + (r~ – a2 – b2) and

z = 2az+2by+ (r; –a2 –b2),

such that the image S* of S is fully contained in

the slab bounded between these two planes. In other

words, the minimum-width annulus problem reduces

to the problem of finding a pair of parallel planes

z = Klz + /c2y + K:, .Z=KI$+K2y+K3

that supports S*, such that

J~-~-+K;)/4 @,

is minimized.

This width-like problem can be solved by applying

the algorithm of Section 3 almost verbatim, except for

the definition of the distance function d(l, l’) between

pairs of lines in R3. In fact, the algorithm itself is es-

sentially independent of the definition of d(.,.), which

enters only into the analysis.

An explicit expression for d(l, t’) can be obtained

as follows. Let the equations defining 1, # be, as in

Section 3,

/: y=alz+as, z = a2z+a4,

1’: y = blz+b3, z = bzz + b4.

The direction of the common normal to both lines is

n = (albz - azbl, az – bz, –(al – bl)) ,

and the planes orthogonal to n and containing /, P,

respectively, are

(x - (0, a3, a4)) . n = O, and (x - (0, b3, bA)) , n = 0,

or

alb2 – a2b1 a2 — b2 a3(a2 – b2) – a4(al – ln)
z= z+—

al – bl al – bl
Y– >

~ = alb2 — a2bl a2 — b2 b3(a2 – b;j ~&aI – bl)
x+

al — bl
—Y -
al – bl al — bl

Plugging this into (1), we thus can write

d(l, e’) = {pas + a4 + v – J~,

where p, v depend only on al, az, bl, bz.

We can now obtain the appropriate variant of

Lemma 3.1. First, we note that if # is fixed then

d(l, 4’) is defined whenever the ~1-coordinate of 4 is

different than that of -4?’. In thk case d(t, 4’) mono-

tonically increases with al, which implies that the ap-

propriate variant of the functions jet is well-defined

(whenever the &-coordinates of 1?and of d are dif-

ferent). To establish the second part of the lemma,

for a fixed parameter 6, let t;, lj be two given lines,

let cl and &2 be fixed (with &l different from the &-

coordinates of 1~ and of l!), and consider the equation

We seek a line 1 that lies above l?; and t; and satisfies

d(l, t~) = d(l, 1~) = 6. This can be written as

where b(lJ, b(2) are the 4-tuples defining lj, l;, re-

spectively, and pl, V1, p2, Zq are independent of (3,

~4. W? thus get a linear system of equations in ~3,

&, which can be easily reduced to a linear equation

in &3 of the form (P1 – p2)(3 = a. This shows that

(2) has a unique solution, unless pl = p2, or

which is the equation of a line in the &&-plane.

We have thus shown that conditions (Fl) and (F2)

of Section 2 are satisfied in this case too, so the anal-

ysis of the preceding section applies here as well, and

we can conclude:

Theorem 4.1 Given a set S ofn points in the plane,

an anrmlus of smallest width that contains S can be

computed by a randomized algorithm in 0(n3/2+z) ex-

pected time, for any E >0.

5 Biggest Stick in a Polygon

The biggest stick problem is to find the longest seg-

ment that can be placed inside a simple n-gon P in

the plane. Chazelle and Sharir gave an 0(nl.99)-time

algorithm, which was improved by Agarwal et al. [1]

to 0(n17i11+E); see also [3] for an intermediate bound.

If the endpoints of the segment are restricted to be

at vertices of P, the problem becomes considerably

easier, and can be solved in O(n log3 n) time [4].

Following the same idea as in [3], we use a dlvide-

and-conquer approach. Partition P into two simple

polygons P1, Pz by a chord c, so that each of P1, Pz

has at most 2n/3 vertices. Let 1. be the line pai-

ning through c. We recursively compute the longest

segment that can be placed within P1 and within Pz,

The merge step requires computing the longest seg-

ment having one endpoint in P1 and the other in Pz.

An easy perturbation argument shows that such a

longest segment has to touch two vertices of P, say,

V1, V2. The difficult case is when V1 E P1 and V2 c P2.

Agarwal et al. [3] showed that finding such a segment

can be reduced to the following problem: We have

a set L1 of a lines, where each line & c L1 is dual

to some vertex vi of P1 and has an edge ei c P1 as-

sociated with it. Similarly, we have another set L2

of b lines, where each line Lj c L2 is dual to some
vertex vj of P2 and has an edge ej of P2 associated

with it. L1 and L2 satisfy the following property: For

any pair & E L1, .!?j c L2, the segment gij = aaaj lies

inside P, where ai (resp. aj) is the intersection point

of the line passing through vi, Vj with ei (resp. ej);

see Figure 1. The goal is to compute the longest seg-
ment gji, over all pairs & c L, lj c Lz. If we define

the distance function d(~;, Yj) as the length of the seg-

ment gaj, then the goal is to compute a farthest pair

in L x L’.

We can show that L1, L2 can be parametrized by

4 real parameters (two for the associated vertex of P

and two for the associated edge), so that the setup

of Section 3 arises here as well; in particular, the re-

sulting collection of trivariate functions satisfies con-

ditions (Fl) and (F2). This allows us to apply the

334

F@ure 1: Illustration to the distance function d(l~, lj)

algorithm described in Section

ther details here, we obtain:

Theorem 5.1 Given a simple

3. Omitting all fur-

n-gon P, the longest

segment that can be placed inside P can be computed

by a randomized algorithm in 0(n312+’) expected time,

for any c >0.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

P. Agarwal, B. Aronov and M. Sharir, Computing
lower envelopes in four dimensions with applications,
Proc. 10th Annual Symp. on Computational Geom-

etry, 1994, 348–358.

P. Agarwal, O. Schwarzkopf and M. Sharir, The over-
lay of lower envelopes in three dimensions and its
applications, this proceedings.

P. Agarwal, M. Sharir, and S. Toledo, New applic~

tions of parametric searching in computational ge-

ometry, .7. Algorithms 17 (1994), 292-318.

A. Aggarwal and S. Suri, The biggest diagonal in a

simple polygon, Inj Proc. Letters 35 (1990), 13–18.

H. Bronnimann and B. Chazelle, Optimal slope se-

lection via cuttings, Proc. 6th Canadian Conf. on

Computational Geometry, 1994, 99-103.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M.

Sharir, Diameter, width, closest line pair, and para-

metric searching, Discrete Comput. Geom. 10 (1993),

183-196.

B. Chazelle, H. Edelsbrunner, L. Guibm, and M.

Sharir, A singly exponential stratification scheme

for real semi–algebraic varieties and its applications,

Proc. 16th Int. Colloq. on Automata, Languages

and Programming, (1989), 179–192. Lecture Notes

in Computer Sciences, vol. 371, Springer-Verlag,

Berlin. (Also in Theo~etical Computer Science 84

(1991), 77-105.)

B. Chazelle and M. Sharir, An algorithm for general-

ized point location and its applications, J. Symbolic

Computation 10 (1990), 281-309.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. Clarkson, H. Edelsbrunner, L. Guiba.s, M. Sharir

and E. Welzl, Combinatorial complexity bounds for

arrangements of curves and spheres, Discrete Com-

put. Geom. 5 (1990), 99–160.

K. Clarkson and P. Shor, Applications of random

sampling in computational geometry II, Discrete

Comput. Geom. 4 (1989), 387-421.

M. Dillencourt, D. Mount, and N. Netanyahu, A ran-

domized algorithm for slope selection, lnt. J. Com-
put. Geom. and Appls 2 (1992), 1-27.

M. de Berg, K. Dobrindt, and O. Schwarzkopf,

On lazy randomized incremental construction, Proc.

26th Annual ACM Symp. on Theory of Computing,

1994, 105-114.

M. de Berg, D. Halperin, and L. Guibas, Vertical de-

composition for triangles in 3-space, Proc. 10th An-

nual Symp. Computational Geometry, 1994, 1–10.

H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakan-

ishi, Roundness algorithms using the Voronoi dia-

grams, First Canadian Conf. on Computational Ge-

ometry, 1989.

D. Halperin and M. Sharir, New bounds for lower

envelopes in 3 dimensions, with applications to visi-

bility in terrains, Discrete Comput. Geom. 12 (1994),

313-326.

D. Haussler and E. Welzl, e-nets and simplex range

queries, Discrete Comput. Geom. 2 (1987), 127-151.

M. Houle and G. Toussaint, Computing the width

of a set, IEEE Transactions on Pattern Anal. and

Mach. Intell. 5 (1988), 761-765.

M. Katz and M. Sharir, Optimal slope selection via

expanders, Inf. Proc. Letters 47 (1993), 115–122.

M. Katz and M. Sharir, An expander-ba~ed approach

to geometric optimization, Proc. 9th Annual Symp.

on Computation! Geometry, 1993, 198-207.

J. Matou3ek, Randomized optimal algorithm for

slope selection, Info. PTOC.Letters 39 (1991), 183–

187.

N. Megiddo, Applying parallel computation algo-

rithms in the design of serial algorithms, J. ACM
30 (1983), 852-865.

M. Sharir, Almost tight upper bounds for lower

envelopes in higher dimensions, Discrete Comput.

Geom. 12 (1994), 327-345.

M. Sharir and P. Agaxwal, Davenport-Schinzel Se-

quences and Their Geometric Applications, Cam-
bridge University Press, Cambridge-New York-

Melbourne, 1995.

M. Smid and R. Janardan, On the width and round-

ness of a set of points in the plane, manuscript, 1995.

335

