
Distance-k knowledge in self-stabilizing

algorithms �

Wayne Goddard1, Stephen T. Hedetniemi1,
David P. Jacobs1, and Vilmar Trevisan2

1 School of Computing, Clemson University, SC 29634 USA
{goddard,hedet,dpj}@cs.clemson.edu

2 Instituto de Matemática, UFRGS, Porto Alegre, Brazil
trevisan@mat.ufrgs.br

Abstract. Many graph problems seem to require knowledge that ex-
tends beyond the immediate neighbors of a node. The usual self-stabilizing
model only allows for nodes to make decisions based on the states of
their immediate neighbors. We provide a general transformation for con-
structing self-stabilizing algorithms which utilize distance-k knowledge.
Our transformation has both a slowdown and space overhead in nO(log k),
and might be thought of as a distance-k resource allocation algorithm.
Our main application is a polynomial-time self-stabilizing algorithm for
finding maximal irredundant sets, a problem which seems to require
distance-4 information. These results can be generalized to efficiently
find maximal P-sets, for properties P which we call local monotonic.
Our techniques extend results in a recent paper by Gairing et al. for
achieving distance-two information.

1 Introduction

Self-stabilization, introduced by Dijkstra [5], is the most inclusive approach to
fault tolerance in distributed systems. In a self-stabilizing algorithm, each node
maintains its local variables, and can make decisions based on the correct knowl-
edge of its neighbors’ states. In a self-stabilizing algorithm, a node may change
its local state by making a move. Algorithms are given as a set of rules of the
form “if p(i) then M”, where p(i) is a predicate and M is a move. A node i be-
comes privileged if p(i) is true. When a node becomes privileged, it may execute
the corresponding move.

We assume a serial model in which no two nodes move simultaneously. A
central daemon selects, among all privileged nodes, the next node to move. If
two or more nodes are privileged, we cannot predict which node will move next.
In this paper we say that an algorithm stabilizes if no node is privileged. An
execution will be represented as a sequence of moves M1, M2, . . ., in which Ms

� This paper is an expanded version of [9], presented at SIROCCO06. This research was
supported by: NSF grant CCR-0222648; CNPq grant 453991/2005-0; and FAPERGS
grant 05/2024.1.

2

denotes the s-th move. One can transform the algorithm to work under other
daemons, using established techniques. We refer the reader to [6] for a general
treatment of self-stabilizing algorithms.

In the usual self-stabilizing model, each node i can read only the variables of
its neighbors, that is, those nodes which are within distance one from i. In the
next section we introduce a more general model in which nodes can read within
distance k. In Section 3, we show how distance-k information, for any fixed k > 0,
can be achieved in the self-stabilizing model, extending results in [7] when k = 2.
This will result in a slowdown, where the running time is multiplied by nO(log k).
In Section 4, we show that in the worst case, the memory requirements are also
multiplied by nO(log k). However, if the system graph has bounded degree, then
the memory cost is at worst O(log n). In Section 5, we obtain a polynomial time
self-stabilizing algorithm for finding a maximal irredundant set, a problem which
requires distance-4 information. In Section 6, we show how to efficiently obtain
maximal P-sets, for properties P that are local.

A very natural problem in distributed computing is mutual exclusion to dis-
tance k, that is, getting exclusive access to all node states up to distance k. So if
S is a local mutual exclusion algorithm such as in [1–3, 12], then one can amplify
the distance of exclusion. Indeed, our algorithm itself can be viewed as a solution
to resource allocation to distance k, but it does not deal with fairness and hence
liveness. We think of it as more useful where the underlying algorithm ensures
fairness, or where the underlying algorithm always terminates (it has a “static”
goal). Recently, Danturi et al. [4] generalized the dining philosophers problem
to avoid conflicts to distance k, and presented a deterministic solution.

A distributed system can be modeled with an undirected graph G = (V, E),
where V is a set of n nodes and E is a set of m edges. If i ∈ V , then N(i), its
open neighborhood, denotes the set of nodes to which i is adjacent, and N [i] =
N(i) ∪ {i} denotes its closed neighborhood. Every node j ∈ N(i) is called a
neighbor of node i. Throughout this paper we assume G is connected and n > 1.

We assume throughout this paper that all nodes have a unique integer ID.
Sometimes we do not distinguish between a node i and its ID. For each k ≥ 1,
we let Nk[i] denote the set of nodes whose distance from i is at most k, and we
let Nk(i) = Nk[i]− {i}. When k = 1, these sets correspond, respectively, to the
closed and open neighborhoods of i.

A k-packing in a graph G = (V, E) is a set S ⊆ V of nodes such that for
every pair of distinct nodes, u, v ∈ S, their minimum distance d(u, v) > k. A
1-packing is, therefore, a set S having the property that no two nodes in S are
adjacent (d(u, v) > 1). This is normally called an independent set. We will use
the problem of finding a maximal k-packing to illustrate our ideas; however we
mention that recently, a better solution to maximal k-packing was provided by
Manne and Mjelde [11].

Algorithm 1 is a well-known and simple self-stabilizing algorithm for finding
the characteristic function of a maximal independent set [13]. The variable f
can have two values, zero or one. It is easy to show that this algorithm stabilizes

3

in at most 2n moves in the usual distance-1 model, and furthermore that at
stabilization the set {i : f(i) = 1} is maximal independent.

Algorithm 1: Maximal independent set

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N(i))(f(j) = 1)
then f(i) = 0

2 The distance-k model

In [7], it was observed that certain algorithmic problems can be solved more easily
on an extended model in which each node can instantly see all state information
of nodes that are within distance two. Having done this, the extended model can
be simulated using a conventional self-stabilizing algorithm, provided all nodes
have unique IDs. In this paper we show how arbitrary distances greater than
two can be achieved. Our idea is to use the technique in [7] recursively.

We now define a class of self-stabilizing algorithm models. For each k ≥ 1, let
the distance-k ball at i, denoted Bk[i], be the subgraph whose node set is Nk[i],
and which contains all edges e incident to nodes j, whose distance from i is less
than k. Note this subgraph may not be the subgraph induced by Nk[i]. When
k = 1, the graph B1[i] is a star. In the distance-k self-stabilizing model, each node
i can instantly see its distance-k ball, along with all state information of these
nodes. Included in this state information is the node’s ID. Thus we may think
of the information available to i, as a labeled graph, where the labels are node
states. We refer to this as node i’s distance-k information. Note the distance-1
model is the usual self-stabilizing algorithmic model. It will be convenient to
assume for now that k is a power of two. Figure 1 shows three different views
from node i under various models. Note, for example, that an edge between
nodes b and y would be visible to node i in the distance-4 model, but not in the
distance-2 model.

Now consider Algorithm 2, which assumes the distance-4 model, and uses a
binary variable f . At each step the set S = {i | f(i) = 1} defines a set of nodes.

Algorithm 2: Maximal 4-packing in distance 4

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N4(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N4(i))(f(j) = 1)
then f(i) = 0

4

a b c d

i

x y z w

b

y

a

x

i

a

x

i

Fig. 1. Distance-4, distance-2, and distance-1 information.

Lemma 1. Under the distance-4 model, Algorithm 2 finds a maximal 4-packing
in at most 2n moves.

Proof. We first claim that if Algorithm 2 stabilizes, the set S = {i | f(i) = 1}
must be a 4-packing. For if i ∈ S, there cannot be another j ∈ N4(i), or i would
be privileged to execute a LEAVE. Therefore S is a 4-packing. Next, we claim
that if the algorithm stabilizes, the 4-packing S is maximal. For if S ∪ {i} is
also a 4-packing, i would be privileged to execute an ENTER. To complete the
proof, we show that each node can make at most two moves. Indeed, once a
node makes an ENTER move, no node in N4(i) can ENTER, and so no node in
N4[i] can move again. If a node makes a LEAVE move, its next move must be
an ENTER, after which it cannot move.

3 Conversion to distance-1

Assume now that we have some distance-2k algorithm S2k, such as Algorithm 2,
in which every node has a local variable f . We now will describe a way to simulate
S2k using a distance-k algorithm Sk. We will see that the running times of Sk

and S2k are related to within a factor in O(n3). In Algorithm Sk, each node i
has three local variables:

– The variable f stores the state of node i with respect to S2k, that is, the
value of S2k’s local variable.

– The variable σ stores a local copy of the node’s distance-k information. We
may assume that σ(i) is a graph where each node is labeled with a pair
(j, fj), where j is an ID of a node in Nk(i). We say that σ(i) is correct if
it represents node i’s distance-k information. In particular, this implies that
for each (j, fj) ∈ σ, f(j) = fj .

– A pointer stores the ID of a member of Nk[i], or has the value NULL. We
write i → j, i → i, and i → NULL to mean, respectively, that i points to j,
i points to itself, and i’s pointer is NULL.

At each step in the execution of Sk, the values f(i) represent a state with
respect to S2k. A node i in the distance-k model can read directly only state

5

information of nodes in Nk[i]. However if j′ ∈ N2k(i), then j′ ∈ Nk(j) for some
j ∈ Nk[i]. It follows that in the distance-k model, by reading σ(j), node i has a
view of f(j′).

For example, consider the leftmost graph of Figure 1, but assume only the
distance-2 model. Then each node stores a σ containing f -values in its 2-neighborhood.
Since node i can directly see node b, and since σ(b) contains (c, fc) and (d, fd),
node i has an indirect view of c and d. However, it is possible for this view to
be stale or incorrect.

During the execution of Sk, we say that node i is S2k-alive if it is privileged
for S2k, under the assumption that its view of {(j, f(j)) | j ∈ N2k(i)} is correct.

We define

minNk[i] = min{j | j ∈ Nk[i] ∧ j → j}, where min{∅} = NULL .

That is, minNk[i] is the smallest ID, within distance k of i, which is pointing to
itself; minNk[i] is defined to be NULL if no member of Nk[i] points to itself.

Algorithm Sk is displayed as Algorithm 3. When k = 1, it is exactly the
algorithm described in [7].

Algorithm 3: Distance-k Algorithm Sk

comment: simulates distance-2k algorithm S2k

local variables:f, σ,→
UPDATE-σ: if σ(i) is incorrect
then update σ(i)

ASK: if i is S2k-alive ∧ (∀j ∈ Nk[i] : j → NULL) ∧ σ(i) is correct
then i → i

RESET: if i �→ minNk[i] ∧ σ(i) is correct
then i → minNk[i]

CHANGE: if ∀j ∈ Nk[i] : j → i ∧ σ(i) is correct

then
{

if i is S2k-alive, then update f(i)
i → NULL

Lemma 2. If Algorithm Sk stabilizes, then all pointers are null, σ(i) is correct
for all i, and no node is S2k-privileged.

Proof. Assume the algorithm Sk has stabilized. Then no node points to itself,
for otherwise the node i pointing to itself having the smallest ID would have all
members of Nk[i] pointing to it, and i would be privileged for a CHANGE move.
Since no node points to itself, minNk[i] is NULL, and therefore all pointers are
NULL. All σ(i) are correct since no node is privileged for an UPDATE-σ. No
node is S2k-privileged, for otherwise it would be privileged to execute ASK.

Lemma 3. While node i is pointing to itself, no node in Nk(i) can execute an
ASK or CHANGE.

6

Proof. For j ∈ Nk(i) to execute ASK, i must be pointing to NULL. For j to
execute CHANGE, i must be pointing to j.

Lemma 4. If node i makes an ASK move, its next move must be a CHANGE
move.

Proof. When i makes an ASK move, all members of Nk[i] are pointing to NULL.
Suppose its next move is a RESET. Then this means that some j ∈ Nk(i) is
pointing to itself. But this is impossible because i → i. Nor can its next move be
an UPDATE-σ, because at the time of the ASK move, σ(i) was correct. But this
can’t change by Lemma 3, nor can its next move be another ASK move because
i → i.

Let us say that a move by i is correct if σ(j) is correct for all j ∈ Nk(i), and
incorrect otherwise.

Lemma 5. If node i makes an ASK move, then its next CHANGE move is
correct.

Proof. Assume that i makes the ASK move at time ta, and makes its next
CHANGE move at time tc. Let j be some member of Nk[i]. At time ta, j was
pointing to NULL, and at tc, j was pointing to i. So let t′, be the last time
in the interval [ta, tc] when j pointed to i. Clearly at t′, σ(j) was correct. But
throughout the interval [t′, tc − 1], σ(j) must have remained correct because no
member of Nk[j] could have performed a CHANGE while j was pointing to i.

Lemma 6. If node i makes a CHANGE move, then its next ASK move is cor-
rect.

Proof. Assume that i makes a CHANGE move at time tc, and its next ASK
move is at time ta. Let j be some member of Nk[i]. At time tc, j was pointing
to i, and at ta, j was pointing to NULL. Let t′ be the last time in the interval
[tc, ta] where j changed its pointer. Then clearly at t′, σ(j) was correct. But σ(j)
must have remained correct throughout the interval [t′, ta] since no member of
Nk[j] could have performed a CHANGE move if j’s pointer remained NULL.

Lemma 7. Between any two RESET moves made by node i, some j ∈ Nk[i]
must execute an ASK or a CHANGE.

Proof. If node i makes a RESET move at time t, and later makes another RESET
move at time t′, minNk[i] must have changed in the time interval between t and
t′. Thus the set {j | j ∈ Nk[i] ∧ j → j} changed. This can happen only if some
j ∈ Nk[i] executes an ASK or CHANGE.

For convenience, we define a REAL-CHANGE move as a CHANGE move in
which the variable f is updated. We let dk

i = |Nk(i)|.
Lemma 8. Consider an interval without a REAL-CHANGE move. Then each
node i can make:

7

1. at most one UPDATE-σ move;
2. at most one ASK move;
3. at most one CHANGE move; and
4. O(dk

i) RESET moves.

Proof. 8.1 is obvious. To see 8.2, suppose node i makes an ASK move. By
Lemma 4, its next move must be a CHANGE move. Then by Lemma 5, the
CHANGE move is correct. Since this is not a REAL-CHANGE, i is not S2k-
privileged. Since no other REAL-CHANGE moves occur, i cannot become S2k-
alive again to execute another ASK move.

To see 8.3, suppose i makes a CHANGE move, and then makes an ASK
move. By Lemma 6, the ASK move is correct. Since no REAL-CHANGE can
take place, the σ’s remain the same, and if i were to execute another CHANGE
move, it would have to be a REAL-CHANGE. Finally, 8.4 follows from Lemma 7.

Lemma 9. There are at most O(n2) moves during an interval without REAL-
CHANGE moves.

Proof. By Lemma 8, during an interval with no REAL-CHANGE moves, each
node i can make only O(n) moves, since dk

i ≤ n. Thus the total number of moves
made by the system is O(n2).

Lemma 10. Each node can make at most one incorrect REAL-CHANGE move.

Proof. An incorrect REAL-CHANGE move can only occur as a node’s first
CHANGE move, because subsequent CHANGE moves will be preceded by an
ASK move, which by Lemma 5, must be correct.

Lemma 11. Let (Mi) be a sequence of moves made by Algorithm 3 during which
no incorrect REAL-CHANGE occurs. Then the subsequence (M ′

i) of REAL-
CHANGE moves is a valid computation of S2k.

Proof. It is precisely the REAL-CHANGE moves that modify the variable f .
Since there are no incorrect REAL-CHANGE moves, each REAL-CHANGE
move is made by a node i because it is privileged with respect to S2k. Thus
this subsequence of REAL-CHANGE moves could have been selected by the S2k

daemon, and represents a valid computation.

Lemma 12. Suppose Algorithm S2k can execute at most a(n) moves. Then in
any interval without an incorrect REAL-CHANGE move, Algorithm Sk can ex-
ecute at most O(a(n)n2) moves.

Proof. By Lemma 11, there can be at most a(n) REAL-CHANGE moves, and
by Lemma 9, between any two REAL-CHANGE moves, there are at most O(n2)
moves.

Theorem 1. In a network with n nodes, a distance-2k algorithm S2k that stabi-
lizes within a(n) moves can be implemented with a distance-k algorithm Sk that
stabilizes in O(a(n)n3) moves.

8

Proof. By Lemma 10 there can be at most n incorrect REAL-CHANGE moves.
By Lemma 12, during the intervals without incorrect moves, there can be at
most O(a(n)n2) moves. Finally by Lemma 2, the algorithm is correct.

Distance k Distance k/2 Distance 1

. . .

Fig. 2. Translating distance-k to distance-1.

Theorem 2. In a network with n nodes, a distance-k algorithm S which stabi-
lizes in a(n) moves can be implemented in the distance-1 model by an algorithm
that stabilizes in a(n)nO(log k) moves.

Proof. Let us first assume k is a power of two. Then we may translate the
distance-k algorithm S into a distance-1 algorithm by repeatedly halving the
distance, as illustrated in Figure 2. From Theorem 1 it follows that the running
time will be multiplied by a factor in O(n3 log2 k), and so the result follows. Now
assume 2i−1 < k < 2i = j. Note that we may run any distance-k algorithm
under the distance-j model, since any information that nodes have at distance-
k is preserved at distance-j. Since log2 j < 2 log2 k, we now can translate our
algorithm to a distance-1 algorithm which runs in a(n)nO(log j) moves, which is
a(n)nO(log k).

Corollary 1. There is a self-stabilizing algorithm to find a maximal 4-packing
that stabilizes in O(n7)moves.

Proof. By Lemma 1 there is an O(n) distance-4 algorithm. Using two transla-
tions, each costing O(n3), we obtain a distance-1 algorithm running in O(n7).

When we translate, say, a distance-4 algorithm S4 to a distance-2 algorithm
S2, each node will contain the original variable f used in S4 in addition to a
pointer and σ. Note that when S2 is then translated to a distance-1 algorithm
S1, each node will contain these three variables in addition to another pointer
and another σ. For example, consider node i, shown in Figure 1. Under the
distance-4 model, i can see the contents of nodes a, b, c, d and x, y, z, w. In the
distance-2 model, i has only a direct view of a, b, x, y. Node i will store f , a
pointer →, and σi, where σi contains

(a, fa), (b, fb), (x, fx), (y, fy).

Since, node i can read the contents of nodes b and y, which contain σb and
σy respectively, node i can read fc, fd, fz, fw. When this distance-2 algorithm

9

is translated to distance-1, node i will contain (f,→, σi), a pointer →′, and σ′
i,

where σ′
i contains

(a, (fa,→′
a, σa)), (b, (fb,→′

b, σb))

In the distance-1 model, node i can directly read the state of nodes a and x,
which contain respectively σ′

a and σ′
x. Since σ′

x contains σb and σ′
x contains σy,

node i achieves an indirect view of B4[i].

4 Memory overhead

We now consider the memory overhead involved in our translation. In our anal-
ysis we will assume that pointers and IDs require log n bits. Using the same
transformation in the proof of Theorem 2, we may assume k is a power of two.

Theorem 3. In a network with n nodes, where a largest k
2 -neighborhood has

size t, a distance-k algorithm which uses b bits per node can be implemented by
a distance-1 algorithm using storage O(tlog k(log n + b + t)).

Proof. Let Sk be a distance-k algorithm, in which k = 2r. Translating it to
a distance-1 algorithm S1 requires r steps, shown in Figure 2. Let mi denote
the memory requirements per node of the distance- k

2i created at stage i. Then
m0 = b. First consider the translation from Sk to S k

2
. Each node i in S k

2
will

store a pointer, the variable f , and σ, which represents the labeled graph B
k
2 [i].

This memory overhead is dominated by σ, representing a labeled graph having
at most t nodes and at most t2 edges. Each node in the graph will be labeled
with an address v and value fv. Hence it will require storage proportional to
m1 = t(log n + b) + t2. Similarly, for i ≥ 1,

mi+1 ≤ t(log n + mi) + t2 (1)

We claim that for each i ≥ 1,

mi ≤ iti(log n + b + t) (2)

As observed already, (2) holds when i = 1, so by induction, assume the relation
holds for some positive i. Then using (1) we get

mi+1 ≤ t(log n + mi) + t2

≤ t(log n + iti(log n + b + t)) + t2

= t log n + iti+1(log n + b) + iti+1 + t2

≤ (i + 1)ti(log n + b) + (i + 1)ti+1

= (i + 1)ti(log n + b + t)

This completes the induction. Setting i = log k in (2) we are done, since k is
constant.

10

Corollary 2. Any distance-k algorithm that uses b bits per node, where b is
constant or polynomial in n, can be translated to a distance-1 algorithm that
uses storage nO(log k).

Proof. Replacing t in the expression above with n, we get (log n + b + n)nlog k.
But log n + b + n is polynomial in n, so this becomes nO(log k).

Corollary 3. If the network has bounded degree, then a distance-k algorithm
that uses b bits per node can be translated to a distance-1 algorithm which uses
O(log n + b) storage per node.

Proof. The numbers t and log k are constants.

5 Maximal irredundant sets

Given a set S of nodes, we say a node s ∈ S has a private neighbor with respect
to S if there exists some x ∈ N [s] − N [S − {s}]. A set S is irredundant [10] if
every s ∈ S has a private neighbor with respect to S. Self-stabilizing algorithms
have been found for many kinds of related sets, such as maximal independent
sets and minimal dominating sets. Although minimal dominating sets are max-
imal irredundant, there exist maximal irredundant sets that are not minimal
dominating. We would like a general algorithm for maximal irredundant sets,
that is, an algorithm that can potentially identify any maximal irredundant set.
Finding such an algorithm has proven difficult because the problem seems to
require distance-4 knowledge.

Let S be a set of nodes, not necessarily irredundant, and let s ∈ S. If s has
a private neighbor with respect to S, but s has no private neighbor with respect
to S ∪ {x}, we say x destroys s. Finally, we say x ∈ V − S is safe if x has a
private neighbor with respect to S ∪ {x}, and no s ∈ S is destroyed by x.

Consider Algorithm 4. It is easy to see that if this algorithm stabilizes, then
S = {i | f(i) = 1} is maximal irredundant. For if it is not irredundant, some i is
privileged to execute a LEAVE move. And if it is not maximal irredundant, some
i can execute an ENTER move. Note also that once a node executes an ENTER,
it will never execute a LEAVE. Thus, given a sufficiently powerful model, each
node moves at most twice.

Algorithm 4: Maximal irredundant set

local variable: f
ENTER: if f(i) = 0 ∧ i is safe
then f(i) = 1

LEAVE: if f(i) = 1 ∧ i has no private neighbor
then f(i) = 0

11

Lemma 13. Node i can decide if it has a private neighbor from the information
in N2[i].

Proof. A node x is a private neighbor of i if and only if x ∈ N [i], but for all
j ∈ N2(i), j ∈ S implies x /∈ N [j].

Lemma 14. Node i can decide if it is safe from the information in N4[i].

Proof. If node i is not safe, then it must destroy some node j ∈ N2[i]. However,
to know whether such a node j has a private neighbor requires examining the
set {f(j′) | j′ ∈ N2[j]}.
Theorem 4. There is a self-stabilizing algorithm for finding a maximal irre-
dundant set that stabilizes in O(n7) moves.

Proof. By Lemma 13 and Lemma 14 it follows that Algorithm 4 can be imple-
mented in the distance-4 model. By our earlier comments, Algorithm 4 stabilizes
in a linear number of moves. The analysis follows by Theorem 2.

We observe that while Algorithm 4 makes a linear number of moves in the
distance-4 model, each simulated move may not take constant time, although it
will be polynomial.

6 Local monotonic properties

The ideas in Section 5 can be generalized. Let k be a positive integer. For i ∈ V
and S ⊆ V , let Gk

i be the subgraph induced by Nk[i], and let Sk
i = Nk[i] ∩ S.

Many properties P that describe vertex sets S are local. By this we mean there
is a predicate p that depends on i ∈ V , Gk

i , and Sk
i . S has P if and only if for

all i ∈ S, p(i, Gk
i , Sk

i) is true. For example, a set S is independent if and only if
for all i ∈ S, | N [i] ∩ S |= 1. We will write p(i) to mean p(i, Gk

i , Sk
i).

We will also insist that p is monotonic. That is, for any j, p(i, Gk
i , Sk

i −{j}) is
true whenever p(i, Gk

i , Sk
i) is true. Informally, this means that if p(i) is true, then

it will remain true if some j is removed from S. We will refer to such properties
as local monotonic.

Recall that a property P is hereditary if whenever S has P , all subsets of
S also have P . It is easy to see that local monotonic properties are hereditary.
Recall also that a P-set S is said to be 1-maximal if, for all x, no proper superset
S∪{x} has P . In general, if a set is 1-maximal, it may not be maximal. However,
it is easy to see for hereditary properties P , a set S is maximal if and only if it
is 1-maximal.

We wish to generalize some of the algorithms considered earlier, including
Algorithm 1, Algorithm 2, and Algorithm 4. Let us say that a node i /∈ S is safe
provided i entering S would make p(i) true and preserve all true p(j), j ∈ Nk(i).
Formally, i is safe if

1. p(i, Gk
i , Sk

i ∪ {i}) is true; and

12

2. for all j ∈ Nk(i), p(j, Gk
j , Sk

j) ⇒ p(j, Gk
j , Sk

j ∪ {i}).
A node i can determine if it is safe by distance-2k information. Now consider
Algorithm 5, which is a distance-2k algorithm.

Algorithm 5: Maximal P-set, P a local monotonic property

local variable: f
ENTER: if f(i) = 0 ∧ i is safe
then f(i) = 1

LEAVE: if f(i) = 1 ∧ ¬p(i)
then f(i) = 0

Theorem 5. Let P be a local monotonic property. In the distance-2k model,
Algorithm 5 finds a maximal P-set in 2n moves.

Proof. If Algorithm 5 stabilizes, then since no node can LEAVE, p(i) is true for
all i ∈ S, and so S is a P-set. Finally we see that since no node can ENTER, S
is 1-maximal and therefore maximal. Next we claim the system must stabilize in
2n moves. For when a node enters S, p(i) becomes true. This will remain true,
because monotonicity prevents leaving nodes from changing p(i), and safety
prevents entering nodes from changing p(i). Therefore once a node executes
ENTER, it will never move again. It follows that no node can move more than
twice.

Corollary 4. For any local monotonic property P, there is a self-stabilizing
algorithm for finding a maximal P-set in a polynomial number of moves.

Proof. By Theorem 5, there is a linear-time distance-2k algorithm to find a
maximal P-set. By Theorem 2 there is a distance-1 algorithm which runs in
nnO(log k) moves.

As a final note about local monotonic properties P , one can easily show that
with any such property, a maximal P-set can be obtained using a one-pass greedy
algorithm.

7 Conclusions and future work

The contribution of this paper is a general methodology for transforming any
distance-k algorithm, such as Algorithm 4, into a self-stabilizing algorithm. Ap-
plications include finding maximal k-packings, maximal irredundant sets and
maximal P-sets for any local monotonic property P . The time and space over-
head of this transformation is in nO(log k). We suggest as further research trying
to improve this time and memory overhead.

13

References

1. J. Beauquier, S. Cordier and S. Delaët, Optimum probabilistic self-stabilization on
uniform rings, Proceedings of the Second Workshop on Self-Stabilizing Systems,
1995 15.1–15.15.

2. C. Boulinier, F. Petit and V. Villain, When graph theory helps self-stabilization,
PODC ’04: Proceedings of the Twenty-third Annual ACM Symposium on Princi-
ples of Distributed Domputing, St. John’s, 2004, 150–159, ACM Press, New York.

3. S. Cantarell, A.K. Datta, F. Petit and V. Villain, Token based group mutual ex-
clusion for asynchronous rings 21st International Conference on Distributed Com-
puting Systems (ICDCS), 2001. Apr 2001 Mesa, 691-694.

4. Praveen Danturi, Mikhail Nesterenko and Sebastien Tixeuil, Self-Stabilizing
Philosophers with Generic Conflicts, 8th International Symposium Stabilization,
Safety, and Security of Distributed Systems, SSS 2006, Dallas, November, 2006
Lecture Notes in Computer Science , Vol. 4280 Datta, Ajoy K.; Gradinariu, Maria
(Eds.).

5. E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Comm. ACM
17 (11) (1974) 643–644.

6. S. Dolev, Self-Stabilization. MIT Press, 2000.
7. M. Gairing, W. Goddard, S.T. Hedetniemi, P. Kristiansen and A.A. McRae,

Distance-two information in self-stabilizing algorithms, Parallel Process. Lett., 14
(2004) 387–398.

8. W. Goddard, S.T. Hedetniemi, D.P. Jacobs and P.K. Srimani, Self-stabilizing
global optimization algorithms for large network graphs, Int. J. Dist. Sensor Net.,
1 (2005) 329–344.

9. W. Goddard, S.T. Hedetniemi, D.P. Jacobs and V. Trevisan, Distance-k informa-
tion in self-stabilizing algorithms, in 13th Colloquium on Structural Information
and Communication Complexity (SIROCCO), Chester, July 2006, LNCS 4056,
349–356.

10. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs, Marcel Dekker, New York, 1998.

11. F. Manne and Morten Mjelde, A memory efficient self-stabilizing algorithm for
maximal k-packing, 8th International Symposium Stabilization, Safety, and Secu-
rity of Distributed Systems, SSS 2006, Dallas, November, 2006 Lecture Notes in
Computer Science , Vol. 4280 Datta, Ajoy K.; Gradinariu, Maria (Eds.).

12. M. Nesterenko and A. Arora, Stabilization-preserving atomicity refinement, Jour-
nal of Parallel and Distributed Computing, 62 , 5 (2002), 766 - 791.

13. S.K. Shukla, D.J. Rosenkrantz and S.S. Ravi, Observations on self-stabilizing graph
algorithms for anonymous networks, Proceedings of the Second Workshop on Self-
Stabilizing Systems, 7.1–7.15, 1995.

