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Abstract

This work describes attempts to solve crossword
puzzle variants, known as go-words, using a prob-
abilistic approach in the form of a genetic algo-
rithm. The go-words puzzle is defined by a fixed
%l‘ld which 1ncludes black squares, and a given
exicon containing words of a specified length. This

roblem, like similar crossword puzzle problems,
18 NP-complete. The size of the search space for
problems of reasonable size, however, makes it a
difficult candidate for attempts to generate solu-
tions through the use of a deterministic algorithm.
The complexity of these problems suggests the ap-
plicability of a probabilistic algorithm. This pa-
Fer describes, in some detail, a genetic algorithm

r solving such puzzles and the authors’ experi-
ences with its construction.

1.0 Overview

The general problem of crossword puzzle construc-
tion is NP-complete [Gare79]. This problem is
described as that of taking an n x n matrix con-
sisting of letter squares and blank spaces and de-
termining if words from a finite lexicon can be
assigned to strings of letter squares in such a way
that no letter squares are left unfilled. This prob-
lem has been attacked in a variety of ways over
the last two decades [Mazl76, Smit81, Harr92,
Berg87] with some modest success.

The general dproblem, however, remains extremely
complex and defies deterministic solution. That
this is so can be seen from the fact that go-words
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puzzles (described below) are periodically pub-
lished in magazines and solved by readers; while
no machine generated solution has yet bettered
those of the readers. Traditional tree spanning
algorithms continue to be applied to the prob-
lem with the ingenuity of individual researchers
expandm the search envelope slightly with each
iteration ?Haer?]. It is easy to determine that
increases in the size and/or ed hoc complexity
of individual puzzles can move them quickly out

of reach of deterministic machine solutlogs once
again. It has been shown that the size of the solu-

tion set can be counted [Harr90}; and for the tar-
get go-words puzzle is estimated to be 2.2 x 10%°.

For the purposes of this paper, we have focused
on a crossword puzzle variant known as go-words.
Use of this puzzle variant is suggested by the fol-
lowing facts. Such puzzles appear regularly in
weekly magazines in various countries. They em-
ploy a letter scoring mechanism, so that puzzle
solutions can be ran i ordered. And prizes are of-
fered to readers for the highest scoring solution,
giving them a strong motivation to do well and
providing us with a very good performance mea-
sure for our algorithmic ﬁ'orts

Go-words puzzles differ from the general cross-
word puzzle construction problem described above
only in that all words in the lexicon associated
with a puzzle are of a fixed length. The value
of individual letters is given as part of each spe-
cific puzzle. We have taken as our standard puz-
zle one that appeared in Woman’s Day (an Aus-
tralian weekly magazine), on December 2, 1981.
The eventual winning entry was published in the
February, 23 1982 issue of the same magazine.

2.0 Complexity

Problems are considered complez because of the
size of the search space that must be traversed
in a quest for legitimate “solutions.” In the case



of the go-words puzzle, this is a two phase pro-
cess. Many attempts to arrive at a solution will
fail when a point is reached where no word avail-
able in the lexicon has the necessary intersectin,

lettersbto fill the next word slot. At the secon
level, because individual letters have point values,

each word in the lexicon has a word value; con-
sequently some puzzle solutions will have higher
scores than others.

The problem can be stated as the two sub-problems
of finding solutions and finding the best solution.
In general, deterministic (tree spanning) algorithms
focus on the first of these sub-problems and the
genetic algorithm focuses on the second. The de-
terministic approach attempts to traverse the en-
tire solution space and locate all of the solutions.
If it succeeds 1n traversing the entire solution set,
it must encounter the bdest solution. The prob-
lem lies in the size of the solution space and the
time required to visit all of it. The genetic al-
gorithm is ﬁrobabiliatic and repeatedly attempts

to use the best solutions it has found so far to
construct new solutions that are slightly better.

Such an algorithm does not guarantee to find any
solutions, no matter how long it runs. Instead, it
warrants that it will probably find a solution that
is probably pretty good.

Following considerable work on this problem us-
ing a deterministic approach, we have designed a
genetic algorithm in an effort to explore the ben-
efits of such an approach.

3.0 Description

Genetic algorithms are a useful technique for solv-
ing a great variety of problems that fall into the
complexity classes NP-complete and NP-hard. The
general form of these algorithms is described in
several places [Holl75, Gold89). Here we assume
the reader has a working knowledge of the parts
and purposes of a “traditional” genetic algorithm.
In the remainder of this paper, we endeavor to
point out only those places where our genetic al-
ﬁorithm differs in significant ways from the “tra-
itional” model.

In the following description we pay particular at-
tention to the encoding used to represent a par-
ticular solution as a bit string (or gene), to the
objeciive funclion used to determine the fitness
of a gene, and to the crossover operations used
to make better solutions out of good solutions.
The important issue of parameter tuning, which
is often a very important consideration 1n elicit-
ing performance from a genetic algorithm, is ad-
dressed later.

The problem of finding go-words solutions falls
into the category of combinatoric problems, as
opposed to numeric problems. The implication
of this is that the solution space for the problem

264

is discrete rather than continuous. Consequently,
a tiny change in a very good answer may render
it into an inferior answer. Numeric prob{ems, on
the other hand, are more likely to be susceptible
to techniques such as annealing, because small
changes in an answer leave you in the near vicinity
of that answer and tend to move you toward a
(possibly local) minimum or maximum.

3.1 Encoding

The discrete nature of the solution space makes
it very important that special attention be paid
to the representation (or encoding technique) of
solutions in the genetic algorithm. gene. Options
open to us include a pure binary representation, a
letter based representation, or a whole word rep-
resentation. {(Note: The authors are presently ex-
ploring methods of using a binary encoding of just
the intersections in the puzzle.) Our present algo-
rithm adopts the whole word approach. (Notice
that Mazlack’s crossword puzzle generation algo-
rithm is reported to have used words originally
and gravitated to letters later.)

The actual encoding of a solution (or partial so-
lution) as a gene is accomplished with a character
string. Letters in the string that represent inter-
sections in the target puzzle occur only once in
the string. A mapping function is maintained to
convert the gene string to an actual puzzle solu-
tion. This scheme is depicted in Figure 1. The
arrows indicated the first few of the 35 intersect-
ing letters found in the target puzzle. The dou-
ble arrow indicates the position at which the ‘h’
in ‘thatch’ is reused as part of a second word.
This approach keeps the gene size manageable by
avoiding redundant information; while allowing
us to identify any horizontal or vertical word slot
as a complete entity.

thatcheffeteraspedrobystal armsretortextrasasternlthrihaptotusttrvis

Figure 1




The algorithm establishes an initial population by
inserting random words from the lexicon. This
provides each gene with a “good” start, but not
a “perfect” start. Horizontal word slots are filled
first, then vertical word slots. As vertical word
slots are filled, the words in some horizonatal slots
are invalidated as intersecting letters are overwrit-
ten. Measurements indicate that 70 to 75 percent
of the word slots contain valid words in a typical
initial population. Using this approach to initial-
ization leaves the population with some distance
to travel before it contains significant numbers of
complete solutions to the puzzle. Figure 2 dis-
plays the first few genes in a typical population.

It is very possible to seed the initial population
with “known” solutions, in what some authors re-
fer to as a “hybrid” approach [Davi91]. In prac-
tice, however, the present algorithm moves very
quickly from its intial state to one in which the
population represents a large number of complete
solutions. It is our conjecture that value of seed-
ing initial populations with “very good” solutions,
may maximize the effects of the genetic search.
An analysis of this conjecture is among the things
that remain on the “to do” list.
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Figure 2

3.2 Objective Function

An individual gene has no knowledge of how good
(or how poor) a solution it represents. The ob-
jective function provides an ordered ranking of
the fitness of the current population. Knowledge
about how to arrive at a solution is external to
the genetic algorithm. Proper rank ordering of
the genes that make up a population insures that
those genes that contain highly valued informa-
tion are most likely to contribute that information
to future populations.
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The intrinsic nature of the go-words puzzle and
the two phase nature of the search for a final an-
swer make the evaluation of gene fitness fairly
straightforward. The more word slots in the so-
lution that contain words actually found in the
lexicon, the higher the score. Furthermore, since
completed puzzles can be ranked by the their re-
spective letter score sums, we can differentiate
among them as well. For the first of these we al-
low a solution a fixed increment, say 500 points,
per legitimate word. For the ranking of otherwise
completed puzzles, we add in the actual go-words
score.

The progress of the algorithm is sensitive to the
relative scores assigned to genes by the objec-
tive function. For example, if the value of com-
pleted words is low, the population is less agres-
sive about gravitating to complete solutions. If,
on the other hand, the value of competed words
is high, the first complete solutions in the pop-
ulation tend to dominate the population to the
exclusion of variety. This topic is address below
along with other parameter values.

3.3 Crossover operation

Perhaps the most important consideration in the
conduct of the algorithm is the specification of
useful crossover and mutation operations. In com-
binatoric problems of this kind, it is often difficult
to find a crossover operation that takes two genes
from the parent population and combines them in
such a way that as much as possible of the “good”
information in each is passed on to their progeny.
[Whit89] The selection of a crossover operator has
considerable impact on the success of the result-
ing genetic algorithm.

As our objective function evaluates solutions with
the greater number of legitimate words more fa-
vorably, the crossover operator is designed to main-
tain words where they exist and to promote them
where they do not. The primary problem pre-
sented by this goal is that of intersecting letters.
As with initialization of the population, insertion
of a word chosen at random from the lexicon will
likely invalidate intersecting words. However, se-
lection of words from the lexicon that conform to
existing intersection constraints has a stupifying
effect on a gene. That is, such a word selection
technique does well at moving a gene toward a



complete solution; but then behaves very conser-
vatively in its efforts to increase the score of that
gene.

It would seem that what is wanted is for the crossover

operations to behave a little less conservatively.
In particular, we want the crossover operation to
be willing (ocassionally) to take a chance on a
new intersection character. In the framework of
“traditional” genetic algorithms, this is properly
the role of the mutation operation. We have at-
tempted to provide a diverse (and heuristically
sensitive) crossover operation, while minimizing
disruption associated with the operation. We al-
low for this by providing four different varieties of
crossover and using a situational approach in se-
lecting among them. The general form of crossover
is depicted in Figure 3.

When crossover is called for between two genes,
random word slots are selected in both of them.
If the selected word slots both contain legitimate
words, an attempt is made to insert those words
into appropriate places in the new gene. In par-
ticular, a search is conducted to locate those word
slots in the new gene that could accomodate the
selected word without violating any intersection
constraints. If more than one such location exists,
one that does not presently contain a valid word
is preferred. In the end, if a tie still exists, one is
chosen at random, and the word is inserted into
the new gene. The search involved here is quite
direct, based on data structures that reflect the
specific nature of a puzzle.

If only one of the two selected word slots con-
tains a legitimate word, that word is subjected to
the process described above; while the other (the
non-word) is replaced by a word from the lexicon
that is selected to avoid violating existing word
constraints. In this process the crossover opera-
tion accepts as constraints only intersecting let-
ters that are part of legitimate words. Intersect-
ing word slots that contain non-words are not con-
sidered to have intersection constraints. Searches
and selections needed here are also provided for
by preprocessing the lexicon and the puzzle de-
scription.

If neither of the two word slots contains a legit-
imate word, words are selected from the lexicon
as described above for both of them. It is this
part of the crossover operation that appears to
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have the greatest impact on moving a popula-
tion rapidly toward complete solutions. Once a
gene represents a complete solution, this option
becomes effectively unused.
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Figure 3

The crossover operation must have a tremendous
impact on the effectiveness of a genetic algorithm.
Consequently, it remains an area of interest in any
attempts to improve the performance of the algo-
rithm. While conservative in its approach, this
method does preserve the essential nature of the
gene. It conserves good information, possibly in-
Jjects new (but valid) information, and minimizes
mutation in the process. The desired level of mu-
tation in the population is managed, instead, by
the mutation opertion.

3.4 Mutation Operation

The mutation operation is provided to insure that
“new” information is continually introduced into
the population. Were this not the case, the pop-
ulation would quickly follow a convenient genetic
path to stagnation. This is referred to as early
convergence [Whit89a). It can be viewed as find-
ing and focusing on a (probably) local maximum.
Our mutation operation is built on the same premise
as the crossover operation: that legitimate words
should be maintained and promoted. In this in-
terest, a small percentage of the population in
each generation is selected at random and given
new (usually valid) information.

The algorithm has been fitted with several differ-
ent mutation operations over time. The simplest
approach is to select a word at random from the
lexicon and insert it into a word slot in the gene.



This has the desired effect, but offers a high prob-
ability that intersecting words will be invalidated.
This is a high price to pay for new information.
In fact, if it does sufficient damage, the resulting
gene may be unable to compete in the population;
thus eliminating any positive effects the mutation
might have had. Instead, the present mutation is
two-fold.

In 3 of every 4 cases the mutation operation se-
lects a new word (if one exists) from the lexicon
that does not invalidate any letters in the target
word slot that are intersecting letters. This ap-
proach provides minimal new information. That
is, it provides only new information of the sort
that promotes the second of the two goals of the
algorithm: bettering an already complete solu-
tion. Of course, it is likely to be visited even in
the case of not yet complete solutions; and thus
does foster diversity in the population.

In the other case; which is invoked one quarter of
the time, the mutation that takes place is of the
more direct varitey. A new word is selected at
random from the lexicon and inserted into a ran-
dom word slot in the gene. This imfuses consid-
erable new information into the gene; in all prob-
ability making it a less than complete solution.
Insuring that such a mutation does not damage
the gene beyond survivability is accomplished by
careful parameter (value) tuning.

3.5 Data Structures

In the conduct of any algorithm dealing with words
and puzzles, the availability of proper data struc-
tures is crucial. In the case of the genetic al-
gorithm, these data structures are very relevant
to the efficiency of the objective function, the
crossover operation, and the mutation operation.
These procedures need to pose certain questions;
and good data structures are going to be those
that answer these questions expeditiously.

The necessary data structures come from two sources:

the lexicon and certain puzzle specific informa-
tion. Both of these sources are preprocessed to
produce data structures specifically designed for
certain queries. A data structure, for example,
might be designed to respond to the question,
“How many words in the lexicon contain an ‘a’
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in the first position and a ’t’ in the fouth posi-
tion?” Other important questions that can be
handled by preprocessing of the lexicon are, “Is
the string ‘tribes’ in the lexicon? and “What
is the go-words score for the string ‘thomas’?”
An example of a question that can be handled by
data structures related to puzzle specific informa-
tion is, “Is there a word slot in the puzzle with
intersections at positions 2 and 4 containing an
‘m’ and an ‘r’?”

The lexicon, for example, is maintained as a set
of word/value pairs. The value of a word is puzzle
specific and is precomputed to save time in the ob-
Jjective function. These pairs are accessed through
a super structure based on alphabets and posi-
tions, such that words with ‘t’ in the fourth pos-
tion can be accessed directly. These same pairs
can be accessed through a hash list constructed
from the words themselves. The size of the hash
table and the nature of the hash function insure
that only a tiny fraction of the words in a typical
2500 word lexicon suffer collisions.

With regard to puzzle specific information, it is
important to be able to indentify the letters in
gene that are relevent to a word slot and to quickly
locate intersecting letters. This information is
maintained in a series of crossreference tables.

4.0 Performance

A genetic algorithm functions by maintaining a
population of genes, representing potential solu-
tions; and generating succeeding generations by
careful selection and modification of genes in the
present generation. Several “parameters” have
potentially great impact on the effectiveness of
the algorithm. These include such important val-
ues as the size of the population, the number of
generations, the amount of genetic material (bits)
that are shared in the construction of new gener-
ations, and the frequency with which mutation
takes place.

It is common to cast these as parameters because
they are often adjusted frequently in an effort to
“fine tune” the algorithm. In this interest, they
are often passed as arguments to the program
rather then hard-coded. Our experience confirms
what other researchers have reported: that these



values can have a devastating impact on the suc-
cess of a genetic algorithm [Daviol].

In the course of this work a wide range of val-
ues were tried for all of these essential values. We
have reported above some of the places where par-
ticular values had special impact, such as the rel-
ative weight of word score and word value. Our
most successful results were obtained with popu-
lation sizes between 1000 and 1500 and 1500 to
2000 generations.

The size of the population effects the ability of
that population to support and maintain diver-
sity. The principle effect of too small a population
in this case is a tendancy to find a “reasonable”
solution and allow it to dominate the population
from then on. The benefits of population size,
however, are not unlimited. There exists a point
at which not much additional value (diversity) is
gained by continuing to increase the number of
genes in the population.

Recalling that the process of identifying a “pretty
good” solution in the case of a go-words puzzle
can be viewed as a two step process, it is inter-
esting that the conduct of these phases can be
observed with the passage of generations. Experi-
mental evidences shows that, using this algorithm
and beginning with 70 to 75 percent partial solu-
tions, complete solutions emerge within 50 gen-
erations. At about 50 generations the majority
of the populations reflect complete (but usually
mediocre) solutions. The process of slowly “grow-
ing” those complete solutions into better solutions
rquires the bulk of the 1500 to 2000 generations.
This suggests that starting with complete solu-
tions (unless they are very good solutions) would
not contribute much to the success of this process.

In our experiments we adopted the entire 2500
word lexicon provided for the puzzle. Determin-
istic algorithms for problems of this type often re-
strict the lexicon by selecting a subset of the most
highly valued words. For the purposes of this al-
gorithm, we did maintain the lexicon in descend-
ing sorted order by word value, allowing highly
valued words to be selected first. However, since
size of the search space is not crucial here, as it
is for a deterministic algorithm, we elected to use
the whole lexicon.
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Running on a DECstation 3100 (RISC architec-
ture), the genetic algorithm in its present form
produces an answer about every 5 to 10 minutes.
We do not offer detailed timing data, as it has
been our goal to “tune” the algorithm itself rather
than to run it on an unencumbered machine to
measure its speed. More often, the algorithm is
run in the background for fairly long periods of
time to produce a file containing the resulting so-
lutions.

5.0 Results

Our current version of this genetic algorithm fares
reasonably well against the deterministic approaches
with which we are familiar, but certainly no bet-
ter. It must be pointed out that deterministic
algorithms take an entirely different approach to
the problem. A deterministic algorithm attempts
to traverse all solutions; while the genetic algo-
rithm attempts to find one, probably pretty good
solution.

For comparison purposes, the best solution pro-
duced by a determinisitic alogorithm, to date, is
shown in Figure 4. That algorithm employs a
number of heuristics to reduce the search space.
It uses a reduced lexicon (the 200 highest val-
ued words), it uses a variable level look-ahead
[Berg89], and it prunes subtrees at run time that
are guaranteed not to contain a solution with a
score greater than a dynamically maintained max-
imum. It has a score of 5648.
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As reported above, it appears to be relatively easy
for automated solutions (both deteministic and
probabilistic) to achieve scores within about 85%
of the highest human scores. Undoubtedly, this
follows from the fact that there are a large num-
ber of such scores. (Note that very low scores are
just as difficult to produce as very high scores.)
In its present state of refinement, the genetic al-
gorithm produces solutions that score above 95%
of the best known score on about one in ten at-
tempts. Its average performance, over 100 runs,
was measured at 91.17% of the best known score;
and its absolute best score on the target puzzle is
97.35% of the best known score. That solution is
reproduced below in Figure 5.
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8. Conclusions

While the genetic algorithm performs well (no-
tably, not as well as the readers of Woman’s Day),
we believe that there is considerable progress still
to be made in terms of our understanding and our
encoding of this problem. The genetic algorithm,
like its deterministic siblings, is subject to consid-
erable refinement. In particular, there is consid-
erable problem specific information that can be
taken advantage of to improve the attack.

The genetic algorithm described here did not spring
directly from concept to program. In fact, it went
through numerous interations (and down some
blind alleys) while maturing to its present form.
It had occurred to us earlier, for example, that
some parts of a puzzle are more complex than
others, and therefore might be somehow key to a
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good solution. An earlier version of the genetic
algorithm was run in two steps: the first to solve
a complex “inner puzzle” and the second to com-
plete only the best solutions produced in phase
one. That version produced solutions equivalent
to those of the present program; but introduced
considerable complexity that is apparently unnec-
essary.

Aside from the parameter values discussed above,
the issues of encoding solutions as bit strings and
effecting crossover without introducing extrane-
ous mutation appear to be key issues. We are
exploring other (some, very novel) ways of repre-
senting puzzle solutions and various crossover op-
erations suggested by those representations. We
are particularly intrigued with the possibility of
representing only the intersections of the puzzle
and the letters that represent a particular solu-
tion. Such an encoding holds the possibility of
less overhead in gene manipulation and more ef-
fective crossover operations.

Crafting improvements in such algorithms pro-
motes our understanding of underlying principles
and relationships in the go-words puzzle, in the
general problem of crossword puzzle construction,
and ultimately in computational solutions for very
complex problems.
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