
COSC 251 – Programming Languages
Project 1

Spring 2017

Objective: Implement a data structure in C/C++ that is easily dealt with in JAVA.

Your Task: You will create an Object Oriented version of the stack data structure that
we will review, briefly, in class (you all should have seen it in your 201 class).
Internally, you may code this as whatever data representation you choose, but will have
to provide the following functionality:

 push, pop, and top functionalities
 Sort the stack by id number (see below) in ascending order.
 Clear the list.
 Print out the entire stack.
 Boolean check for empty stack.
 Size return.

This functionality will be tested through execution of various methods that are specified
below. This project will test your understanding of pointers and pointer chasing. Each
node should be its own object and contain an instantiation of a class called Student which
has three private members (int id, double gpa, String name) and get/set functions as well
as a constructor. The node class should also contain the pointers that you’ll need to
complete the functionality of the stack.

Your Stack class should hold your actual stack made of nodes and contain the
functionality noted in the list above. This will be the primary class that our driver will
interface with. Also note, since your Stack is a stack, we will not be allowing for arbitrary
index gets.

Code Requirements:

Your project files must follow the requirements below. If they do not, it will either not
work with our driver, or it will not be structured correctly for a Stack. You must
implement the following methods with the exact method signature noted:

In Stack.h/Stack.cpp

Stack() //constructor call
int length() //returns length of the Stack
void printStack() //prints every member of the Stack, in proper order
void push(Student element) //adds element to the Stack
Student top() //returns the Student at index 0

void pop() //remove the student on top
void sort() //sorts the stack by Student id
void clear() //empties the stack
Student topandpop() //removes and returns the top element of the stack
bool isEmpty() //returns true if the stack is empty
int size() //returns the size of the stack

In Node.h/Node.cpp

Node(Student s) //Constructor call
Student getStudent()

In Student.h/Student.cpp

Student(int i, double g, string n) //Constructor call, sets id, gpa, and name
int getID()
double getGPA()
string getName()

You may have more methods and classes than specified, but not less.

Testing:

You should test your code against our driver (posted in the next week). If your code does
not complete correctly (i.e. the correct, matching outputs) with our driver, then you have
code issues that you must fix. If your code works correctly with our driver then you can
be reasonably assured that you will do well. Note that errors will need to be caught and
dealt with without crashing the driver program. See the driver program for specifics as all
errors we will be testing for are tested in the driver.

Deliverables: the class files for Student, Node, and Stack, plus any other class files you
may need.

Expectations: The code should be clean, concise, well-commented and correct. If you
use an outside source, be sure to document that source. Significant use of outside sources
will result in a deduction. Grading rubric will be provided a week ahead of the due date.
You may work in pairs on this project and pairs across sections are acceptable. If you are
going to work in a pair, you must email me with your team by 5pm on Tuesday, February
7th. Failure to email by that deadline will mean that you will be working alone for this
project.

DUE: February 17th, 11:59pm via Blackboard

