
COSC 251 – Programming Languages
Project 2

Spring 2017

Objective: Use Python to solve a bevy of problems.

Your Task: The SMCM Programming Team once upon a time competed each fall in a programming
competition hosted by colleges in our region. As part of their preparation, they solved a wide variety of
problems all of which could be solved via Python without too many issues. For this project, you will
provide solutions to 3 of these problems. You will be required to answer all three questions and each
question is worth 33 1/3 points.

For all questions, input may be provided to your function through the parameter list, or through user input
handled by your function. Pay attention to each description for information on which questions are which.
Also, all output should be handled by your function, do not return any data. Some problems also have a
“code golf” aspect to them, you must get your solutions under a particular character count, or you will be
penalized. For all problems, you may not use any packages external to python.

Q1: My birthday is coming up. Alas, I am getting old and would like to feel young again. Fortunately, I
have come up with an excellent way of feeling younger: if I write my age as a number in an appropriately
chosen base b, then it appears to be smaller. For instance, suppose my age in base 10 is 32. Written in base
16, it is only 20!

However, I cannot choose an arbitrary base when doing this. If my age written in base b contains digits
other than 0 to 9, then it will be obvious that I am cheating, which defeats the purpose. In addition, if my
age written in base b is too small, then it would again be obvious that I am cheating.

Given my age y and a lower bound l on how small I want my age to appear, find the largest base b such that
y written in base b contains only decimal digits, and is at least l when interpreted as a number in base 10.

The input consists of a single string passed to the function containing two base 10 integers y (10 <= y <=
1018) and l (10 <= l <= y). Print the largest base b as described above.

Examples:

Input:
32 20

2016 100

Output:
16

42

Method signature: Problem1(s)
No user input allowed
Par: 318, including whitespace

Q2: During the October Revolution of 1917, the Bolsheviks used a simple transposition cipher to send
messages. The message was broken into 25-character blocks. The end of the message would have
additional characters added until the message length was a multiple of 25. Each block was then handled
independently.

The message was written in a 5x5 grid. Spaces between words were ignored.
Message: THE COMMISSAR SAYS HELLO

Written in grid, with padding characters added:

THECO
MMISS
ARSAY
SHELL
OABCD

The encryption key is a permutation of the integers 1-5, which determines the order in which the columns
are read to produce the ciphertext:

Key: 54123
OSYLD CSALC TMASO HMRHA EISEB

You are to take in a string with a Bolshevik-encrypted message. Each string is written with the key (a
permutation of the integers from 1-5), followed by the 25-character message in 5-character groups. The
message will be entirely alphabetic (no digits or punctuation), all upper-case. Our sample message would
be presented as

54123 OSYLD CSALC TMASO HMRHA EISEB

Your output is the decrypted message, also in 5-letter groups, each group separated by a single space with a
newline (with no trailing space) at the end of each message. You do not need to strip out the padding.

THECO MMISS ARSAY SHELL OABCD

Examples:

Input:
54123 OSYLD CSALC TMASO HMRHA EISEB

41532 IEVEA AATST SAENA GRNMA IGITA

Output:
THECO MMISS ARSAY SHELL OABCD

AIGIS AGREA TINVE STMEN TAAAA

Method signature: Problem2(s)
No user input allowed.
Par: 166 characters, including whitespace.

Q3: When looking at binary search trees (BST), it is sometimes helpful to determine (and group) trees that
have the same topology. For this problem, you will take, as input, a series of numeric inputs that form one
or more BSTs and output the total number of topologies that you generate. For instance, if I have five trees:

2 7 1
3 1 4
1 5 9
2 6 5
9 7 3

Then the resulting trees look like this:

Problem C
Ceiling Function

Time limit: 5 seconds

Advanced Ceiling Manufacturers (ACM) is analyzing the properties of its new series of Incredibly
Collapse-Proof Ceilings (ICPCs). An ICPC consists of n layers of material, each with a different value
of collapse resistance (measured as a positive integer). The analysis ACM wants to run will take the
collapse-resistance values of the layers, store them in a binary search tree, and check whether the shape
of this tree in any way correlates with the quality of the whole construction. Because, well, why should
it not?

To be precise, ACM takes the collapse-resistance values for the layers, ordered from the top layer to the
bottom layer, and inserts them one-by-one into a tree. The rules for inserting a value v are:

• If the tree is empty, make v the root of the tree.

• If the tree is not empty, compare v with the root of the tree. If v is smaller, insert v into the left
subtree of the root, otherwise insert v into the right subtree.

ACM has a set of ceiling prototypes it wants to analyze by trying to collapse them. It wants to take each
group of ceiling prototypes that have trees of the same shape and analyze them together.

For example, assume ACM is considering five ceiling prototypes with three layers each, as described
by Sample Input 1 and shown in Figure C.1. Notice that the first prototype’s top layer has collapse-
resistance value 2, the middle layer has value 7, and the bottom layer has value 1. The second prototype
has layers with collapse-resistance values of 3, 1, and 4 – and yet these two prototypes induce the same
tree shape, so ACM will analyze them together.

Given a set of prototypes, your task is to determine how many different tree shapes they induce.

9

7

3

2

1 7

(2, 7, 1)

3

1 4

(3, 1, 4)

1

5

9

(1, 5, 9)

2

6

5

(2, 6, 5) (9, 7, 3)

Figure C.1: The four tree shapes induced by the ceiling prototypes in Sample Input 1.

Input

The first line of the input contains two integers n (1  n  50), which is the number of ceiling
prototypes to analyze, and k (1  k  20), which is the number of layers in each of the prototypes.

The next n lines describe the ceiling prototypes. Each of these lines contains k distinct integers (between
1 and 106, inclusive), which are the collapse-resistance values of the layers in a ceiling prototype, ordered
from top to bottom.

ACM-ICPC World Finals 2016 Problem C: Ceiling Function 5

And I can say that I have 4 total topologies.

The input is to be processed via keyboard, and the first line of the input contains two integers n (1 <= n <=
50), which is the number of trees to analyze, and k (1 <= k <= 20) which is the number of vertices in each
tree. The next n lines describe each tree. Each of those lines have k distinct integers which are the values of
each of the vertices.

Examples:

Input:
5 3
2 7 1
3 1 4
1 5 9
2 6 5
9 7 3

3 4
3 1 2 40000
3 4 2 1
33 42 17 23

Output:
4

2

Method signature: Problem3()
Par: No maximum character requirement

Deliverables: your Python source. All three sets of code should be stored in a single file named Proj2.py,
following the above method signatures.

Expectations: The code should be clean, concise, well-commented and correct. If you use an outside
source, be sure to document that source. Significant use of outside sources will result in a deduction.
Grading rubric will be provided a week ahead of the due date. A driver with the input from the examples
will be provided shortly. You are allowed to work in teams of up to three for this project. If you choose to
work in a team, one member of the team is required to email me with who they are working with by 5pm,
2/28.

Learning Targets: Python development experience, classic problem solving, a bit of code optimization,
and a ton of reading comprehension.

Credit: Collegiate programming competitions.

DUE: March 10th, 11:59pm via Blackboard, team information due 5pm 2/28 via email.

