Self Stabilizing

Algorithms

Andrew March, Sinclair Fuh, and Matthew Manoly

Overview

Concept in distributed computing: a model in which multiple computers work
together to efficiently run a software system

o A self-stabilizing system will always reach a legitimate state within a certain time
frame

® A non self-stabilizing system can’t guarantee a permanent legitimate state
Traditional fault-tolerant systems don't always work, such as when starting in an

illegitimate state

History

First presented by Edsger W. Dijkstra in 1974
Self-Stabilizing Systems in Spite of Distributed
Control

® Previous systems can stabilize only if a global clock

and a limit to how long each transition within the

system takes existed

Distributed Computing

Components of a software system are split among several communicating computers running

together as a single system

Conceptually similar to parallel processing
Networks can be local (LAN) or over the internet (WAN)

Computers can communicate with all or some members of the network
Commonly seen in client/server communications models

Typically, more computers = more efficiency

Self Stabilization

By definition, a self-stabilizing algorithm must abide by 2 rules:
o The system will reach a valid state, no matter the state it starts in
o The system will remain in the valid state provided a fault does not occur

® A weak stabilizing system can be used instead if sufficient, which only guarantees a chance of
stabilizing from each state
e Time complexity is measured differently: measured in rounds and cycles

o A round is the shortest time in which each processor executes at least one command
o A cycle is the shortest time in which each processor executes its full set of commands

Dijkstra’s token ring model

Earliest concept of a self-stabilizing algorithm, proposed by Dijkstra himself
Unidirectional ring of networks

System is only valid when a single token exists in the network

Must self stabilize from a state where there are too many, or no tokens

I MODULE ProcessTokenRing
EXTENDS Integers

CONSTANT N, M

ASSUME N € Nat\ {0}
Procs £ 1..N

Dijkstra’s stabilizing token ring with processes

--algorithm TokenRing{
variable token =[k € 0.. N — (k%M)|;

fair process (j € Procs)
{ JO: while (TRUE)
{ await token|[self] # token[(self —1)];
token|self] := token|(self —1)];
}
}
fair process (i € {0})
{ 10: while (TRUE)
{ await (token|[self] = token[N]);
token|[self| := (token[N| + 1)%M

http://muratbuffalo.blogspot.com/2015/01/dijkstras-stabilizing-token-ring.html

Maximal Matching

Set of edges on a graph
No 2 edges share vertices

No edges can be added to the set

Will find maximal matching set regardless of starting state

G T &3

https://en.wikipedia.org/wiki/Matching_(graph_theory)

U
marriage: matched.i = PRmarried(i) A points_to.i = null A points_to.r =i —

|
seduction: matched.i = PRmarried(i) A points_to.i = null AVEk € N : points_to.k # i
A(points_to.r = null A r > i A ~matched.r) —
points_to.i := Max{j € N : (points_to.j = null A j > i A ~matched.j)}

points_to.i :=r

|

abandonment: matched.i = PRmarried(i) A points_to.i = j A\ points_to.j # i
A(matched.j vV j <1i) —
points_to.i := null

http://hal.upmc.fr/hal-00569219/document

points_to.i: the node that i points to. Null if pointing nowhere
PRmarried(i): True if points_to.i = j && points_to.j = i (matched)
matched.j: True if neighbor j is matched

Now do it yourself

if node i isn’t pointing anywhere and a neighbor node j is pointing towards it:
point towards j

if node i isn’t pointing anywhere and no neighbors are pointing towards it:
point towards the highest value neighbor j, that is also not pointing anywhere and j>i

if node i is pointing to a neighbor j, but j isn't pointing back and j is either <=i, or matched:
stop pointing towards j

Questions?

Works Cited

http://hal.upmc.fr/hal-00569219/document

https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD426.PDF

https://whatis.techtarget.com/definition/distributed-computing

http://hal.upmc.fr/hal-00569219/document
https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD426.PDF
https://whatis.techtarget.com/definition/distributed-computing

