
COSC 251 – Programming Languages
Project 2

Spring 2018

Objective: Use Python to solve a bevy of problems.

Your Task: The SMCM Programming Team once upon a time competed each fall in a programming
competition hosted by colleges in our region. As part of their preparation, they solved a wide variety of
problems all of which could be solved via Python without too many issues. For this project, you will
provide solutions to 3 of these problems. You will be required to answer all three questions and each
question is worth 33 1/3 points. As a general guideline, while the problems are all worth the same amount,
their difficulty is not. Generally, the difficulty starts with Q1 as the easiest problem, and Q3 is the most
difficult.

For all questions, input may be provided to your function through the parameter list, or through user input
handled by your function. Pay attention to each description for information on which questions are which.
Also, all output should be handled by your function, do not return any data. For all problems, you may not
use any packages external to python.

Q1: If you’ve ever taken a chemistry course, you’ve seen this sort of thing denoting a chemical reaction:

2Na + 2H2O = 2NaOH + H2

The symbols ‘H’, ‘O’, and ‘Na’ stand for various kinds of elements; each term (separated by ‘+’ and ‘=’)
represents a molecule; the subscripted integer numerals after each element (defaulting to 1) represent the
number of that element in the molecule (though elements can occur multiple times – as in acetic acid,
‘CH3COOH’); and the integer numeric coefficients in front of a molecule (again defaulting to 1) represent
the number of participating molecules of the attached type. You are to write a program that checks such
equations for balance. For example, your program will accept

6H2O + 6CO2 = 6O2 + C6H12O6

but indicate that

O2 + H2 = H2O

is erroneous.

The input to your program will consist of equations of the form shown above, separated by whitespace,
except that the equations themselves contain no whitespace and subscripted numerals are not written with
subscripts. Each chemical element is denoted by a single upper-case letter, an upper-case letter followed by
one letter, or an upper-case letter followed by two letters (Uuo for instance).

For each equation, produce a line of output that echoes the equation followed either by the phrase
“balances” or “does not balance” in the format shown in the example below.

Example:

Input:
6H2O+6CO2=6O2+C6H12O6
2Na+2H2O=2NaOH+H2 C6H12O6=3C2H2+3O2

Output:
6H2O+6CO2=6O2+C6H12O6 balances
2Na+2H2O=2NaOH+H2 balances
C6H12O6=3C2H2+3O2 does not balance

Method signature: Problem1(s)
No user input allowed

Q2: Consider the sequence of all words formed entirely of lower-case letters and having the following
properties:

• A word x appears before a word y if x is shorter than y.
• Any two words of the same length appear in alphabetical order.
• The sequence contains exactly the words whose letters appear in strictly increasing order (for

example ‘a’, ‘ab’, ‘abc’, but not ‘ba’ or ‘bb’).

To each word in this sequence, associate a positive integer index, starting with 1:

a → 1
b → 2

…
z → 26

ab → 27
ac → 28

…
az → 51

…
vwxyz → 83681

Your program is to read a series of lower-case words from one to five letters long, separated by whitespace.
For each word read, if the word is invalid print the number 0, and otherwise print its index in the sequence.

Example:

Input:
z a

cat
vwxyz

Output:
26
1
0
83681

Method signature: Problem2(s)
No user input allowed.

Q3: When looking at binary search trees (BST), it is sometimes helpful to determine (and group) trees that
have the same topology. For this problem, you will take, as input, a series of numeric inputs that form one
or more BSTs and output the total number of topologies that you generate. For instance, if I have five trees:

2 7 1
3 1 4
1 5 9
2 6 5
9 7 3

Then the resulting trees look like this:

Problem C
Ceiling Function

Time limit: 5 seconds

Advanced Ceiling Manufacturers (ACM) is analyzing the properties of its new series of Incredibly
Collapse-Proof Ceilings (ICPCs). An ICPC consists of n layers of material, each with a different value
of collapse resistance (measured as a positive integer). The analysis ACM wants to run will take the
collapse-resistance values of the layers, store them in a binary search tree, and check whether the shape
of this tree in any way correlates with the quality of the whole construction. Because, well, why should
it not?

To be precise, ACM takes the collapse-resistance values for the layers, ordered from the top layer to the
bottom layer, and inserts them one-by-one into a tree. The rules for inserting a value v are:

• If the tree is empty, make v the root of the tree.

• If the tree is not empty, compare v with the root of the tree. If v is smaller, insert v into the left
subtree of the root, otherwise insert v into the right subtree.

ACM has a set of ceiling prototypes it wants to analyze by trying to collapse them. It wants to take each
group of ceiling prototypes that have trees of the same shape and analyze them together.

For example, assume ACM is considering five ceiling prototypes with three layers each, as described
by Sample Input 1 and shown in Figure C.1. Notice that the first prototype’s top layer has collapse-
resistance value 2, the middle layer has value 7, and the bottom layer has value 1. The second prototype
has layers with collapse-resistance values of 3, 1, and 4 – and yet these two prototypes induce the same
tree shape, so ACM will analyze them together.

Given a set of prototypes, your task is to determine how many different tree shapes they induce.

9

7

3

2

1 7

(2, 7, 1)

3

1 4

(3, 1, 4)

1

5

9

(1, 5, 9)

2

6

5

(2, 6, 5) (9, 7, 3)

Figure C.1: The four tree shapes induced by the ceiling prototypes in Sample Input 1.

Input

The first line of the input contains two integers n (1 n 50), which is the number of ceiling
prototypes to analyze, and k (1 k 20), which is the number of layers in each of the prototypes.

The next n lines describe the ceiling prototypes. Each of these lines contains k distinct integers (between
1 and 106, inclusive), which are the collapse-resistance values of the layers in a ceiling prototype, ordered
from top to bottom.

ACM-ICPC World Finals 2016 Problem C: Ceiling Function 5

And I can say that I have 4 total topologies.

The input is to be processed via keyboard, and the first line of the input contains two integers n (1 <= n <=
50), which is the number of trees to analyze, and k (1 <= k <= 20) which is the number of vertices in each
tree. The next n lines describe each tree. Each of those lines have k distinct integers which are the values of
each of the vertices.

Examples:

Input:
5 3
2 7 1
3 1 4
1 5 9
2 6 5
9 7 3

3 4
3 1 2 40000
3 4 2 1
33 42 17 23

Output:
4

2

Method signature: Problem3()

Deliverables: your Python source. All three sets of code should be stored in a single Jupyter notebook
named Proj2.ipynb, following the above method signatures.

Expectations: The code should be clean, concise, well-commented and correct. If you use an outside
source, be sure to document that source. Significant use of outside sources will result in a deduction.
Grading rubric will be provided a week ahead of the due date. A driver with the input from the examples
will be provided shortly. You are allowed to work in teams of up to three for this project. If you choose to
work in a team, one member of the team is required to email me with who they are working with by 5pm,
3/1.

Learning Targets: Python development experience, classic problem solving, and a ton of reading
comprehension.

Credit: Collegiate programming competitions.

DUE: March 8th, 11:59pm via Blackboard, team information due 5pm 3/1 via email.

